Insights from DataFest point to new opportunities for undergraduate statistics courses: Team collaborations, designing research questions, and data ethics
{"title":"Insights from DataFest point to new opportunities for undergraduate statistics courses: Team collaborations, designing research questions, and data ethics","authors":"J. Noll, Maria Tackett","doi":"10.1111/test.12345","DOIUrl":null,"url":null,"abstract":"As the field of data science evolves with advancing technology and methods for working with data, so do the opportunities for re‐conceptualizing how we teach undergraduate statistics and data science courses for majors and non‐majors alike. In this paper, we focus on three crucial components for this re‐conceptualization: Developing research questions, professional ethics, and team collaborations. We share vignettes from two teams of undergraduate statistics or data science majors at two different stages of their development (novice and expert) while they worked on a DataFest data challenge. These vignettes shed light on opportunities for re‐conceptualizing introductory courses to give more attention to issues of the process of developing focused research questions when given a complex data set, professional ethics and bias, and how to collaborate effectively with others. We provide some implications for teaching and learning as well as an example activity for educators to use in their courses.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/test.12345","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
As the field of data science evolves with advancing technology and methods for working with data, so do the opportunities for re‐conceptualizing how we teach undergraduate statistics and data science courses for majors and non‐majors alike. In this paper, we focus on three crucial components for this re‐conceptualization: Developing research questions, professional ethics, and team collaborations. We share vignettes from two teams of undergraduate statistics or data science majors at two different stages of their development (novice and expert) while they worked on a DataFest data challenge. These vignettes shed light on opportunities for re‐conceptualizing introductory courses to give more attention to issues of the process of developing focused research questions when given a complex data set, professional ethics and bias, and how to collaborate effectively with others. We provide some implications for teaching and learning as well as an example activity for educators to use in their courses.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.