SPARK: a framework for multi-scale agent-based biomedical modeling

A. Solovyev, Maxim Mikheev, Leming Zhou, Joyeeta Dutta-Moscato, C. Ziraldo, G. An, Y. Vodovotz, Qi Mi
{"title":"SPARK: a framework for multi-scale agent-based biomedical modeling","authors":"A. Solovyev, Maxim Mikheev, Leming Zhou, Joyeeta Dutta-Moscato, C. Ziraldo, G. An, Y. Vodovotz, Qi Mi","doi":"10.1145/1878537.1878541","DOIUrl":null,"url":null,"abstract":"Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components.\n In this work, we describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a standalone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.\n We are currently utilizing SPARK to develop multi-scale inflammation models in diverse settings such as cancer, viral infection, and spinal cord injury.","PeriodicalId":93648,"journal":{"name":"International journal of agent technologies and systems","volume":"2 3 1","pages":"18-30"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1878537.1878541","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of agent technologies and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1878537.1878541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. In this work, we describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a standalone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster. We are currently utilizing SPARK to develop multi-scale inflammation models in diverse settings such as cancer, viral infection, and spinal cord injury.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPARK:一个基于多尺度主体的生物医学建模框架
复杂生物系统的多尺度建模仍然是系统生物学领域的核心挑战。一种称为基于代理的建模的动态知识表示方法可以研究由单个组件执行的离散事件产生的更高级别的行为。在这项工作中,我们描述了SPARK(基于代理的知识表示简单平台),这是一个专门为系统级生物医学模型开发设计的基于代理的建模框架。SPARK是一个用Java编写的独立应用程序。它为开发基于代理的模型(ABMs)提供了一个用户友好的界面和一种简单的编程语言。SPARK具有以下特征:1)连续空间,可以模拟真实的物理空间;2)柔性剂的大小和形状,可以代表各种细胞类型的相对比例;3)生物医学模型中可以同时模拟和可视化多个尺度的多个空间;4)方便的图形用户界面。现有糖尿病足溃疡和急性炎症的ABMs在SPARK中实施。在NetLogo和SPARK中运行相同复杂度的模型;基于spark的模型运行速度要快两到三倍。目前,我们正在利用SPARK开发不同环境下的多尺度炎症模型,如癌症、病毒感染和脊髓损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Formal Agent-Based Simulation Modeling Framework of an AIDS Complex Adaptive System Artificial Minds with Consciousness and Common sense Aspects Cooperative Multi-Agent Joint Action Learning Algorithm (CMJAL) for Decision Making in Retail Shop Application Adaptive Congestion Controlled Multipath Routing in VANET: A Multiagent Based Approach The Meaningfulness of Statistical Significance Tests in the Analysis of Simulation Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1