Simultaneous Lasso and Dantzig Selector in High Dimensional Nonparametric Regression

IF 0.3 Q4 MATHEMATICS, APPLIED International Journal of Applied Mathematics & Statistics Pub Date : 2013-06-06 DOI:10.1155/2013/571361
Shiqing Wang, Limin Su
{"title":"Simultaneous Lasso and Dantzig Selector in High Dimensional Nonparametric Regression","authors":"Shiqing Wang, Limin Su","doi":"10.1155/2013/571361","DOIUrl":null,"url":null,"abstract":"During the last few years, a great deal of attention has been focused on Lasso and Dantzig selector in high dimensional linear regression when the number of variables can be much larger than the sample size. Under a sparsity scenario, Bickel et al. (2009) showed that the Lasso estimator and the Dantzig selector exhibit similar behavior, and derived oracle inequalities for the prediction risk in the general nonparametric regression model, as well as bounds on the L_p estimation loss in the linear model. The Assumption RE (s,m,c) and Assumption RE (s,c) play a significant role in their paper. In this paper, the assumptions equivalent with Assumption RE and Assumption RE are given. More precise oracle inequalities for the prediction risk in the general nonparametric regression model and bounds on the L_p estimation loss in the linear model are derived when the number of variables can be much larger than the sample size.","PeriodicalId":44573,"journal":{"name":"International Journal of Applied Mathematics & Statistics","volume":"42 1","pages":"103-118"},"PeriodicalIF":0.3000,"publicationDate":"2013-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/571361","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics & Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/571361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

Abstract

During the last few years, a great deal of attention has been focused on Lasso and Dantzig selector in high dimensional linear regression when the number of variables can be much larger than the sample size. Under a sparsity scenario, Bickel et al. (2009) showed that the Lasso estimator and the Dantzig selector exhibit similar behavior, and derived oracle inequalities for the prediction risk in the general nonparametric regression model, as well as bounds on the L_p estimation loss in the linear model. The Assumption RE (s,m,c) and Assumption RE (s,c) play a significant role in their paper. In this paper, the assumptions equivalent with Assumption RE and Assumption RE are given. More precise oracle inequalities for the prediction risk in the general nonparametric regression model and bounds on the L_p estimation loss in the linear model are derived when the number of variables can be much larger than the sample size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维非参数回归中的Lasso和Dantzig选择器
在过去的几年里,Lasso和Dantzig选择器在高维线性回归中受到了很大的关注,当变量的数量远远大于样本量时。在稀疏情况下,Bickel et al.(2009)表明Lasso估计器和Dantzig选择器表现出相似的行为,并推导出一般非参数回归模型中预测风险的oracle不等式,以及线性模型中L_p估计损失的界。假设RE (s,m,c)和假设RE (s,c)在他们的论文中发挥了重要作用。本文给出了与假设RE和假设RE等价的假设。当变量数量远远大于样本量时,导出了一般非参数回归模型中预测风险的更精确的oracle不等式和线性模型中L_p估计损失的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian Estimation of the Entropy of the Half-Logistic Distribution Based on Type-II Censored Samples Left-turn Track Function of Bicycle Flow in Intersection Cox Proportional Hazard with Multivariate Adaptive Regression Splines to Analyze the Product Sales Time in E-Commerce Some application of ideals of Г-AG-ring Simultaneous Lasso and Dantzig Selector in High Dimensional Nonparametric Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1