Initial Antinoise Performance Analysis of Pupil Phase Diversity Based on Genetic Algorithm

Q3 Engineering Advances in Optoelectronics Pub Date : 2013-09-02 DOI:10.1155/2013/721420
Huizhen Yang, Yaoqiu Li
{"title":"Initial Antinoise Performance Analysis of Pupil Phase Diversity Based on Genetic Algorithm","authors":"Huizhen Yang, Yaoqiu Li","doi":"10.1155/2013/721420","DOIUrl":null,"url":null,"abstract":"Pupil phase diversity (PPD) wavefront sensor is a new kind of phase-visualization methods, and the output signal of PPD represents the input pupil phase and shows a 1-1 mapping between the position of the wavefront error in the pupil and its position in the output signal. High-precisely wavefront measuring can be obtained under no noise by using appropriate phase restoration algorithm while performance of PPD under noise is unknown. We analyzed antinoise performance of PPD based on genetic algorithm (GA) through measuring the distorted wavefront under different noise level. Simulation results show that wavefront measuring is almost not affected by the existence of noise, which indicates that PPD based on GA can be used in applications with noise.","PeriodicalId":7352,"journal":{"name":"Advances in Optoelectronics","volume":"2013 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/721420","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/721420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Pupil phase diversity (PPD) wavefront sensor is a new kind of phase-visualization methods, and the output signal of PPD represents the input pupil phase and shows a 1-1 mapping between the position of the wavefront error in the pupil and its position in the output signal. High-precisely wavefront measuring can be obtained under no noise by using appropriate phase restoration algorithm while performance of PPD under noise is unknown. We analyzed antinoise performance of PPD based on genetic algorithm (GA) through measuring the distorted wavefront under different noise level. Simulation results show that wavefront measuring is almost not affected by the existence of noise, which indicates that PPD based on GA can be used in applications with noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的瞳孔相位分集初始抗噪性能分析
瞳孔相位分集(PPD)波前传感器是一种新型的相位可视化方法,PPD的输出信号代表输入瞳孔相位,并且在瞳孔中波前误差的位置与其在输出信号中的位置呈1-1映射关系。采用合适的相位恢复算法,可以在无噪声的情况下获得高精度的波前测量,而PPD在噪声下的性能是未知的。通过测量不同噪声水平下的畸变波前,分析了基于遗传算法的PPD的抗噪性能。仿真结果表明,波前测量几乎不受噪声存在的影响,表明基于遗传算法的PPD可以应用于有噪声的场合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Optoelectronics
Advances in Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Advances in OptoElectronics is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of optoelectronics.
期刊最新文献
Impact of the Four-Sideband and Two-Sideband Theories in Designing of Fiber Optical Parametric Amplifiers 1D Confocal Broad Area Semiconductor Lasers (Confocal BALs) for Fundamental Transverse Mode Selection (TMS#0) Application of M Sequence Family Measurement Matrix in Streak Camera Imaging 1 ML Wetting Layer upon Ga(As)Sb Quantum Dot (QD) Formation on GaAs Substrate Monitored with Reflectance Anisotropy Spectroscopy (RAS) A Practical Method to Design Reflector-Based Light-Emitting Diode Luminaire for General Lighting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1