ONE-CARBON METABOLISM IN HIGHER PLANTS.

A. Hanson, S. Roje
{"title":"ONE-CARBON METABOLISM IN HIGHER PLANTS.","authors":"A. Hanson, S. Roje","doi":"10.1146/ANNUREV.ARPLANT.52.1.119","DOIUrl":null,"url":null,"abstract":"The metabolism of one-carbon (C1) units is essential to plants, and plant C1 metabolism has novel features not found in other organisms-plus some enigmas. Despite its centrality, uniqueness, and mystery, plant C1 biochemistry has historically been quite poorly explored, in part because its enzymes and intermediates tend to be labile and low in abundance. Fortunately, the integration of molecular and genetic approaches with biochemical ones is now driving rapid advances in knowledge of plant C1 enzymes and genes. An overview of these advances is presented. There has also been progress in measuring C1 metabolite fluxes and pool sizes, although this remains challenging and there are relatively few data. In the future, combining reverse genetics with flux and pool size determinations should lead to quantitative understanding of how plant C1 pathways function. This is a prerequisite for their rational engineering.","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"93 1","pages":"119-137"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.119","citationCount":"406","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant physiology and plant molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 406

Abstract

The metabolism of one-carbon (C1) units is essential to plants, and plant C1 metabolism has novel features not found in other organisms-plus some enigmas. Despite its centrality, uniqueness, and mystery, plant C1 biochemistry has historically been quite poorly explored, in part because its enzymes and intermediates tend to be labile and low in abundance. Fortunately, the integration of molecular and genetic approaches with biochemical ones is now driving rapid advances in knowledge of plant C1 enzymes and genes. An overview of these advances is presented. There has also been progress in measuring C1 metabolite fluxes and pool sizes, although this remains challenging and there are relatively few data. In the future, combining reverse genetics with flux and pool size determinations should lead to quantitative understanding of how plant C1 pathways function. This is a prerequisite for their rational engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高等植物的单碳代谢。
单碳(C1)单位的代谢对植物至关重要,植物C1代谢具有其他生物没有的新特征-加上一些谜。尽管具有中心性、独特性和神秘性,但植物C1生物化学在历史上的探索很少,部分原因是其酶和中间体往往不稳定且丰度低。幸运的是,分子和遗传方法与生物化学方法的结合正在推动植物C1酶和基因知识的快速发展。本文概述了这些进展。在测量C1代谢物通量和池大小方面也取得了进展,尽管这仍然具有挑战性,而且数据相对较少。在未来,将反向遗传学与通量和池大小的确定相结合,将有助于定量了解植物C1通路的功能。这是他们进行理性工程的先决条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CIRCADIAN RHYTHMS IN PLANTS. MOLECULAR ENGINEERING OF C4 PHOTOSYNTHESIS. ISOPRENE EMISSION FROM PLANTS. CHLAMYDOMONAS AS A MODEL ORGANISM. THE PLASTID DIVISION MACHINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1