D. E. Richards, K. E. King, T. Ait-Ali, N. Harberd
{"title":"HOW GIBBERELLIN REGULATES PLANT GROWTH AND DEVELOPMENT: A Molecular Genetic Analysis of Gibberellin Signaling.","authors":"D. E. Richards, K. E. King, T. Ait-Ali, N. Harberd","doi":"10.1146/ANNUREV.ARPLANT.52.1.67","DOIUrl":null,"url":null,"abstract":"Gibberellins are hormones that control growth and a wide variety of other plant developmental processes. In recent years, significant progress has been made on the biochemistry of gibberellin biosynthesis and on the mechanisms by which gibberellin levels are regulated in plants. There have also been major advances in the understanding of gibberellin signaling, with several key genes being cloned. This review discusses our current understanding of gibberellin signaling, as seen from the perspective of molecular genetic analysis, and relates these observations to previous biochemical studies. In particular, we highlight an important conclusion of recent years: that GAI/RGA and orthologs play major roles in gibberellin signaling in diverse plant species, and that gibberellin probably stimulates growth by derepression of GAI/RGA.","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"52 1","pages":"67-88"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.67","citationCount":"517","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant physiology and plant molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 517
Abstract
Gibberellins are hormones that control growth and a wide variety of other plant developmental processes. In recent years, significant progress has been made on the biochemistry of gibberellin biosynthesis and on the mechanisms by which gibberellin levels are regulated in plants. There have also been major advances in the understanding of gibberellin signaling, with several key genes being cloned. This review discusses our current understanding of gibberellin signaling, as seen from the perspective of molecular genetic analysis, and relates these observations to previous biochemical studies. In particular, we highlight an important conclusion of recent years: that GAI/RGA and orthologs play major roles in gibberellin signaling in diverse plant species, and that gibberellin probably stimulates growth by derepression of GAI/RGA.