Jonathan Højberg, Kristian B. Knudsen, J. Hjelm, T. Vegge
{"title":"Reactions and SEI Formation during Charging of Li-O2 Cells","authors":"Jonathan Højberg, Kristian B. Knudsen, J. Hjelm, T. Vegge","doi":"10.1149/2.0051507EEL","DOIUrl":null,"url":null,"abstract":"Reactions and SEI Formation during Charging of Li-O2 Cells In this letter we combine detailed electrochemical impedance measurements with quantitative measurements of O2 evolution and Li2O2 oxidation to describe the charge mechanisms during charge of Li-O2 batteries with porous carbon electrodes. We identify Li2O2 oxidation at 3.05 V and an apparent chemical formation of a solid electrolyte interface (SEI) layer as the first monolayer of Li2O2 is oxidized, leading to a voltage increase. The first electrochemical degradation reaction is identified between 3.3 V and 3.5 V, and the chemical degradation is limited above 3.5 V, suggesting that a chemically stable SEI layer has been formed.","PeriodicalId":11470,"journal":{"name":"ECS Electrochemistry Letters","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1149/2.0051507EEL","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Electrochemistry Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.0051507EEL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Reactions and SEI Formation during Charging of Li-O2 Cells In this letter we combine detailed electrochemical impedance measurements with quantitative measurements of O2 evolution and Li2O2 oxidation to describe the charge mechanisms during charge of Li-O2 batteries with porous carbon electrodes. We identify Li2O2 oxidation at 3.05 V and an apparent chemical formation of a solid electrolyte interface (SEI) layer as the first monolayer of Li2O2 is oxidized, leading to a voltage increase. The first electrochemical degradation reaction is identified between 3.3 V and 3.5 V, and the chemical degradation is limited above 3.5 V, suggesting that a chemically stable SEI layer has been formed.