Analysis of Random Variation in Subthreshold FGMOSFET

IF 1.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Active and Passive Electronic Components Pub Date : 2016-07-28 DOI:10.1155/2016/3741250
R. Banchuin
{"title":"Analysis of Random Variation in Subthreshold FGMOSFET","authors":"R. Banchuin","doi":"10.1155/2016/3741250","DOIUrl":null,"url":null,"abstract":"The analysis of random variation in the performance of Floating Gate Metal Oxide Semiconductor Field Effect Transistor (FGMOSFET) which is an often cited semiconductor based electronic device, operated in the subthreshold region defined in terms of its drain current (), has been proposed in this research. is of interest because it is directly measurable and can be the basis for determining the others. All related manufacturing process induced device level random variations, their statistical correlations, and low voltage/low power operating condition have been taken into account. The analysis result has been found to be very accurate since it can fit the nanometer level SPICE BSIM4 based reference with very high accuracy. By using such result, the strategies for minimizing variation in can be found and the analysis of variation in the circuit level parameter of any subthreshold FGMOSFET based circuit can be performed. So, the result of this research has been found to be beneficial to the variability aware design of subthreshold FGMOSFET based circuit.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2016-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/3741250","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/3741250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

The analysis of random variation in the performance of Floating Gate Metal Oxide Semiconductor Field Effect Transistor (FGMOSFET) which is an often cited semiconductor based electronic device, operated in the subthreshold region defined in terms of its drain current (), has been proposed in this research. is of interest because it is directly measurable and can be the basis for determining the others. All related manufacturing process induced device level random variations, their statistical correlations, and low voltage/low power operating condition have been taken into account. The analysis result has been found to be very accurate since it can fit the nanometer level SPICE BSIM4 based reference with very high accuracy. By using such result, the strategies for minimizing variation in can be found and the analysis of variation in the circuit level parameter of any subthreshold FGMOSFET based circuit can be performed. So, the result of this research has been found to be beneficial to the variability aware design of subthreshold FGMOSFET based circuit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚阈值FGMOSFET的随机变化分析
浮栅金属氧化物半导体场效应晶体管(FGMOSFET)是一种经常被引用的基于半导体的电子器件,工作在根据漏极电流()定义的亚阈值区域,本研究提出了对其性能随机变化的分析。是有趣的,因为它是直接可测量的,可以作为决定其他的基础。所有相关的制造过程引起的器件水平随机变化,它们的统计相关性,以及低电压/低功率操作条件都被考虑在内。分析结果与纳米级SPICE BSIM4基准的拟合精度非常高,分析结果非常准确。利用这一结果,可以找到最小化变化的策略,并可以分析任何基于亚阈值的FGMOSFET电路的电路电平参数的变化。研究结果对基于亚阈值FGMOSFET的变异性感知电路的设计是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Active and Passive Electronic Components
Active and Passive Electronic Components ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊介绍: Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.
期刊最新文献
Design of a Microwave Quadrature Hybrid Coupler with Harmonic Suppression Using Artificial Neural Networks Research on Equivalent Circuit Model of HVDC Valve and Calculation of Thyristor Junction Temperature Analysis and Design of High-Energy-Efficiency Amplifiers for Delta-Sigma Modulators An Ameliorated Small-Signal Model Parameter Extraction Method for GaN HEMTs up to 110 GHz with Short-Test Structure A Low Threshold Voltage Ultradynamic Voltage Scaling SRAM Write Assist Technique for High-Speed Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1