Y. Shusse, N. Takahashi, K. Nakagawa, S. Satoh, T. Iguchi
{"title":"Polarimetric Radar Observation of the Melting Layer in a Convective Rainfall System during the Rainy Season over the East China Sea","authors":"Y. Shusse, N. Takahashi, K. Nakagawa, S. Satoh, T. Iguchi","doi":"10.1175/2010JAMC2469.1","DOIUrl":null,"url":null,"abstract":"During the rainy season over the East China Sea, convective rainfalls often show melting layer (ML) characteristics in polarimetric radar variables. In this research, the appearance ratio of the ML (the ratio of rainfall area accompanied by polarimetric ML signatures) and the variation in height of the level of the ML signature maximum (MLSM level; defined by the level of the rhv minimum in the ML) in a convective rainfall region in a rainfall system over the East China Sea observed on 2 June 2006 were studied using C-band polarimetric radar (COBRA). For this analysis, a method of rainfall type classification that evaluates the presence of an ML in addition to providing conventional convective‐stratiform classification using range‐ height indicator (RHI) observation data was developed. This rainfall type classification includes two steps: conventional convective‐stratiform separation using the horizontal distribution of Zh at 2-km altitude, and ML detection using the vertical profile of rhv at each horizontal grid point. Using a combination of these two classifications, the following four rainfall types were identified: 1) convective rainfall with an ML, 2) convective rainfall with no ML, 3) stratiform rainfall with an ML, and 4) stratiform rainfall with no ML. An ML was detected in 53.9% of the convective region in the rainfall system. Using the same definition, an ML was detected in 83.1% of the stratiform region. The ML in the convective region showed a marked decrease in rhv coincident with an increase in ZDR around the ambient 08C level, as did that in the stratiform region. Melting aggregated snow was the likely cause of the ML signature in the convective region. The average height of the MLSM level in the convective region was 4.64 km, which is 0.46 km higher than that in the stratiform region (4.18 km) and 0.27 km higher than the ambient 08C level (4.37 km).","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"50 1","pages":"354-367"},"PeriodicalIF":2.6000,"publicationDate":"2011-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1175/2010JAMC2469.1","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/2010JAMC2469.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 20
Abstract
During the rainy season over the East China Sea, convective rainfalls often show melting layer (ML) characteristics in polarimetric radar variables. In this research, the appearance ratio of the ML (the ratio of rainfall area accompanied by polarimetric ML signatures) and the variation in height of the level of the ML signature maximum (MLSM level; defined by the level of the rhv minimum in the ML) in a convective rainfall region in a rainfall system over the East China Sea observed on 2 June 2006 were studied using C-band polarimetric radar (COBRA). For this analysis, a method of rainfall type classification that evaluates the presence of an ML in addition to providing conventional convective‐stratiform classification using range‐ height indicator (RHI) observation data was developed. This rainfall type classification includes two steps: conventional convective‐stratiform separation using the horizontal distribution of Zh at 2-km altitude, and ML detection using the vertical profile of rhv at each horizontal grid point. Using a combination of these two classifications, the following four rainfall types were identified: 1) convective rainfall with an ML, 2) convective rainfall with no ML, 3) stratiform rainfall with an ML, and 4) stratiform rainfall with no ML. An ML was detected in 53.9% of the convective region in the rainfall system. Using the same definition, an ML was detected in 83.1% of the stratiform region. The ML in the convective region showed a marked decrease in rhv coincident with an increase in ZDR around the ambient 08C level, as did that in the stratiform region. Melting aggregated snow was the likely cause of the ML signature in the convective region. The average height of the MLSM level in the convective region was 4.64 km, which is 0.46 km higher than that in the stratiform region (4.18 km) and 0.27 km higher than the ambient 08C level (4.37 km).
期刊介绍:
The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.