Application of Microsatellite Loci for Molecular Identification of Elite Genotypes, Analysis of Clonality, and Genetic Diversity in Aspen Populus tremula L. (Salicaceae)

D. Politov, M. Belokon, Y. S. Belokon, T. Polyakova, A. Shatokhina, E. A. Mudrik, A. Azarova, M. Filippov, K. Shestibratov
{"title":"Application of Microsatellite Loci for Molecular Identification of Elite Genotypes, Analysis of Clonality, and Genetic Diversity in Aspen Populus tremula L. (Salicaceae)","authors":"D. Politov, M. Belokon, Y. S. Belokon, T. Polyakova, A. Shatokhina, E. A. Mudrik, A. Azarova, M. Filippov, K. Shestibratov","doi":"10.1155/2015/261518","DOIUrl":null,"url":null,"abstract":"Testing systems for molecular identification of micropropagated elite aspen (Populus tremula L.) genotypes were developed on the base on microsatellite (SSR) loci. Out of 33 tested microsatellite loci, 14 were selected due to sustainable PCR amplification and substantial variability in elite clones of aspen aimed for establishment of fast-rotated forest plantations. All eight tested clones had different multilocus genotypes. Among 114 trees from three reference native stands located near the established plantations, 80 haplotypes were identified while some repeated genotypes were attributed to natural clones which appeared as a result of sprouting. The selected set of SSR markers showed reliable individual identification with low probability of appearance of identical aspen genotypes (a minimum of 4.8 · 10−10 and 1 × 10−4 for unrelated and related individuals, resp.). Case studies demonstrating practical applications of the test system are described including analysis of clonal structure and levels of genetic diversity in three natural aspen stands growing in the regions where plantations made of elite clones were established.","PeriodicalId":73471,"journal":{"name":"International journal of plant genomics","volume":"2015 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/261518","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of plant genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/261518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Testing systems for molecular identification of micropropagated elite aspen (Populus tremula L.) genotypes were developed on the base on microsatellite (SSR) loci. Out of 33 tested microsatellite loci, 14 were selected due to sustainable PCR amplification and substantial variability in elite clones of aspen aimed for establishment of fast-rotated forest plantations. All eight tested clones had different multilocus genotypes. Among 114 trees from three reference native stands located near the established plantations, 80 haplotypes were identified while some repeated genotypes were attributed to natural clones which appeared as a result of sprouting. The selected set of SSR markers showed reliable individual identification with low probability of appearance of identical aspen genotypes (a minimum of 4.8 · 10−10 and 1 × 10−4 for unrelated and related individuals, resp.). Case studies demonstrating practical applications of the test system are described including analysis of clonal structure and levels of genetic diversity in three natural aspen stands growing in the regions where plantations made of elite clones were established.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微卫星位点在水杨科白杨优良基因型分子鉴定、克隆性及遗传多样性分析中的应用
以微卫星(SSR)位点为基础,建立了微繁殖优良杨树(Populus tremula L.)基因型分子鉴定系统。在33个被测试的微卫星位点中,有14个是由于持续的PCR扩增和杨树精英无性系的大量变异而被选中的,目的是建立快速轮作的森林人工林。所有8个被测无性系均具有不同的多位点基因型。在已建立人工林附近的3个参考原生林分的114棵树中,鉴定出80个单倍型,而一些重复基因型归因于发芽后出现的自然无性系。所选择的SSR标记具有可靠的个体鉴定,出现相同杨树基因型的概率较低(无亲缘关系和亲缘关系的概率分别为4.8·10−10和1 × 10−4)。案例研究展示了测试系统的实际应用,包括对生长在建立优质无性系人工林地区的三种天然白杨林分的克隆结构和遗传多样性水平的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Transcriptome Analysis Reveals a Preformed Defense System in Apple Root of a Resistant Genotype of G.935 in the Absence of Pathogen. Molecular Identification and Karyological Analysis of a Rampant Aspen Populus tremula L. (Salicaceae) Clone. Development of SNP Genotyping Assays for Seed Composition Traits in Soybean. Transcript Polymorphism Rates in Soybean Seed Tissue Are Increased in a Single Transformant of Glycine max Application of Microsatellite Loci for Molecular Identification of Elite Genotypes, Analysis of Clonality, and Genetic Diversity in Aspen Populus tremula L. (Salicaceae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1