Transcriptional regulation of lipopolysaccharide (LPS)-induced Toll-like receptor (TLR) expression in murine macrophages: role of interferon regulatory factors 1 (IRF-1) and 2 (IRF-2)
{"title":"Transcriptional regulation of lipopolysaccharide (LPS)-induced Toll-like receptor (TLR) expression in murine macrophages: role of interferon regulatory factors 1 (IRF-1) and 2 (IRF-2)","authors":"Q. Nhu, N. Cuesta, S. Vogel","doi":"10.1177/09680519060120050401","DOIUrl":null,"url":null,"abstract":"Activation of TLRs is most closely associated with induction of pro-inflammatory gene expression; however, expression of many other genes, including the TLR genes themselves, has also been shown to be modulated following TLR engagement. A large family of nuclear transcription factors, the interferon regulatory factors (IRFs), have been implicated in TLR signaling leading to pro-inflammatory gene expression. Given that IRF-1 and IRF-2 counter-regulate the transcriptional activity of many genes, we hypothesized that IRF-1 and IRF-2 might also regulate TLR gene expression following LPS stimulation of murine macrophages. mRNA derived from medium- or LPS-treated primary peritoneal macrophages was analyzed for TLR gene expression using quantitative real-time PCR. In wild-type macrophages, LPS up-regulated expression of TLRs 1—3 and 6—9 steady-state mRNA, while TLR4 mRNA was modestly downregulated. IRF-2—/ — macrophages responded to LPS with dysregulated expression of TLR3, TLR4, and TLR5 mRNA, whereas IRF-1 deficiency dampened LPS-induced mRNA expression for TLR3, TLR6, and TLR9. Functional studies revealed aberrant TLR3 signaling in IRF-2—/ — macrophages. Collectively, these findings reveal an additional level of complexity associated with TLR transcriptional regulation and suggest that the trans-acting factors, IRF-1 and IRF-2, contribute to the innate immune response to infections by regulating TLR gene expression.","PeriodicalId":80292,"journal":{"name":"Journal of endotoxin research","volume":"12 1","pages":"285 - 295"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/09680519060120050401","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of endotoxin research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09680519060120050401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58
Abstract
Activation of TLRs is most closely associated with induction of pro-inflammatory gene expression; however, expression of many other genes, including the TLR genes themselves, has also been shown to be modulated following TLR engagement. A large family of nuclear transcription factors, the interferon regulatory factors (IRFs), have been implicated in TLR signaling leading to pro-inflammatory gene expression. Given that IRF-1 and IRF-2 counter-regulate the transcriptional activity of many genes, we hypothesized that IRF-1 and IRF-2 might also regulate TLR gene expression following LPS stimulation of murine macrophages. mRNA derived from medium- or LPS-treated primary peritoneal macrophages was analyzed for TLR gene expression using quantitative real-time PCR. In wild-type macrophages, LPS up-regulated expression of TLRs 1—3 and 6—9 steady-state mRNA, while TLR4 mRNA was modestly downregulated. IRF-2—/ — macrophages responded to LPS with dysregulated expression of TLR3, TLR4, and TLR5 mRNA, whereas IRF-1 deficiency dampened LPS-induced mRNA expression for TLR3, TLR6, and TLR9. Functional studies revealed aberrant TLR3 signaling in IRF-2—/ — macrophages. Collectively, these findings reveal an additional level of complexity associated with TLR transcriptional regulation and suggest that the trans-acting factors, IRF-1 and IRF-2, contribute to the innate immune response to infections by regulating TLR gene expression.