Pub Date : 2019-11-06eCollection Date: 2019-01-01DOI: 10.1155/2019/3154856
Amerigo Giudice, Francesco Liborio, Fiorella Averta, Selene Barone, Leonzio Fortunato
Oral lichenoid reactions (OLR) can be caused by systemic drug exposure. To the best of our knowledge, this is the second report describing a case of OLR induced by rituximab administration in a patient with a diagnosis of non-Hodgkin B-cell lymphoma. After 5 doses of rituximab, a typical pattern of OLP was identified with bilateral and symmetrical lesions on the buccal mucosa and on the right lingual margin. This temporal relationship suggested a probable association between oral lesions and drug therapy. The clinical diagnosis of a rituximab-induced OLR was confirmed by an incisional biopsy reporting a histopathological result of lichenoid mucositis consistent with oral lichen planus. Because of the increasing use of rituximab, it is necessary to know and recognize this uncommon side effect.
{"title":"Oral Lichenoid Reaction: An Uncommon Side Effect of Rituximab.","authors":"Amerigo Giudice, Francesco Liborio, Fiorella Averta, Selene Barone, Leonzio Fortunato","doi":"10.1155/2019/3154856","DOIUrl":"10.1155/2019/3154856","url":null,"abstract":"<p><p>Oral lichenoid reactions (OLR) can be caused by systemic drug exposure. To the best of our knowledge, this is the second report describing a case of OLR induced by rituximab administration in a patient with a diagnosis of non-Hodgkin B-cell lymphoma. After 5 doses of rituximab, a typical pattern of OLP was identified with bilateral and symmetrical lesions on the buccal mucosa and on the right lingual margin. This temporal relationship suggested a probable association between oral lesions and drug therapy. The clinical diagnosis of a rituximab-induced OLR was confirmed by an incisional biopsy reporting a histopathological result of lichenoid mucositis consistent with oral lichen planus. Because of the increasing use of rituximab, it is necessary to know and recognize this uncommon side effect.</p>","PeriodicalId":80292,"journal":{"name":"Journal of endotoxin research","volume":"12 1","pages":"3154856"},"PeriodicalIF":0.7,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6875254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87279855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-15Epub Date: 2016-12-07DOI: 10.4049/jimmunol.1601585
Seema Patel, Steven M Blaauboer, Heidi R Tucker, Samira Mansouri, Juan Sebastian Ruiz-Moreno, Lutz Hamann, Ralf R Schumann, Bastian Opitz, Lei Jin
TMEM173 encodes MPYS/STING and is an innate immune sensor for cyclic dinucleotides (CDNs) playing a critical role in infection, inflammation, and cancer. The R71H-G230A-R293Q (HAQ) of TMEM173 is the second most common human TMEM173 allele. In this study, using data from the 1000 Genomes Project we found that homozygous HAQ individuals account for ∼16.1% of East Asians and ∼2.8% of Europeans whereas Africans have no homozygous HAQ individuals. Using B cells from homozygous HAQ carriers, we found, surprisingly, that HAQ/HAQ carriers express extremely low MPYS protein and have a decreased TMEM173 transcript. Consequently, the HAQ/HAQ B cells do not respond to CDNs. We subsequently generated an HAQ knock-in mouse expressing a mouse equivalent of the HAQ allele (mHAQ). The mHAQ mouse has decreased MPYS protein in B cells, T cells, Ly6Chi monocytes, bone marrow-derived dendritic cells, and lung tissue. The mHAQ mouse also does not respond to CDNs in vitro and in vivo. Lastly, Pneumovax 23, with an efficacy that depends on TMEM173, is less effective in mHAQ mice than in wild type mice. We conclude that HAQ is a null TMEM173 allele. Our findings have a significant impact on research related to MPYS-mediated human diseases and medicine.
TMEM173 编码 MPYS/STING,是环状二核苷酸(CDN)的先天免疫传感器,在感染、炎症和癌症中发挥着关键作用。TMEM173 的 R71H-G230A-R293Q (HAQ) 是人类第二常见的 TMEM173 等位基因。在这项研究中,我们利用来自 "1000 基因组计划"(1000 Genomes Project)的数据发现,在东亚人和欧洲人中,HAQ 等位基因个体分别占 16.1%和 2.8%,而非洲人中没有 HAQ 等位基因个体。利用同源HAQ携带者的B细胞,我们惊讶地发现,HAQ/HAQ携带者的MPYS蛋白表达量极低,TMEM173转录本也减少了。因此,HAQ/HAQ B 细胞对 CDN 没有反应。随后,我们产生了一种表达等同于 HAQ 等位基因的小鼠(mHAQ)的 HAQ 基因敲入小鼠。mHAQ 小鼠的 B 细胞、T 细胞、Ly6Chi 单核细胞、骨髓树突状细胞和肺组织中的 MPYS 蛋白减少。mHAQ 小鼠在体外和体内对 CDN 也没有反应。最后,肺炎疫苗 23 的效力取决于 TMEM173,但在 mHAQ 小鼠中的效力低于野生型小鼠。我们的结论是,HAQ 是一个无效的 TMEM173 等位基因。我们的研究结果对 MPYS 介导的人类疾病和医学研究具有重要影响。
{"title":"The Common R71H-G230A-R293Q Human TMEM173 Is a Null Allele.","authors":"Seema Patel, Steven M Blaauboer, Heidi R Tucker, Samira Mansouri, Juan Sebastian Ruiz-Moreno, Lutz Hamann, Ralf R Schumann, Bastian Opitz, Lei Jin","doi":"10.4049/jimmunol.1601585","DOIUrl":"10.4049/jimmunol.1601585","url":null,"abstract":"<p><p>TMEM173 encodes MPYS/STING and is an innate immune sensor for cyclic dinucleotides (CDNs) playing a critical role in infection, inflammation, and cancer. The R71H-G230A-R293Q (HAQ) of TMEM173 is the second most common human TMEM173 allele. In this study, using data from the 1000 Genomes Project we found that homozygous HAQ individuals account for ∼16.1% of East Asians and ∼2.8% of Europeans whereas Africans have no homozygous HAQ individuals. Using B cells from homozygous HAQ carriers, we found, surprisingly, that HAQ/HAQ carriers express extremely low MPYS protein and have a decreased TMEM173 transcript. Consequently, the HAQ/HAQ B cells do not respond to CDNs. We subsequently generated an HAQ knock-in mouse expressing a mouse equivalent of the HAQ allele (mHAQ). The mHAQ mouse has decreased MPYS protein in B cells, T cells, Ly6C<sup>hi</sup> monocytes, bone marrow-derived dendritic cells, and lung tissue. The mHAQ mouse also does not respond to CDNs in vitro and in vivo. Lastly, Pneumovax 23, with an efficacy that depends on TMEM173, is less effective in mHAQ mice than in wild type mice. We conclude that HAQ is a null TMEM173 allele. Our findings have a significant impact on research related to MPYS-mediated human diseases and medicine.</p>","PeriodicalId":80292,"journal":{"name":"Journal of endotoxin research","volume":"4 1","pages":"776-787"},"PeriodicalIF":0.0,"publicationDate":"2017-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225030/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87283778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-01-01DOI: 10.1177/0968051907081869
Shin-ichi Tanabe, Charles Bodet, Daniel Grenier
Peptostreptococcus micros is a Gram-positive anaerobic bacterium associated with periodontitis, a chronic inflammatory disease affecting tooth-supporting tissues. In the present study, we investigated the response of human macrophages to stimulation with a cell wall preparation from P. micros. In addition, the effect of the preparation on the phosphorylation of macrophage kinases was studied. The preparation, which was non-toxic for macrophages, significantly increased the secretion of the pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6. It also increased the secretion of two potent chemokines IL-8 and, to a lesser extent, RANTES. Lastly, stimulation of macrophages by the P. micros cell wall preparation induced a significant increase in MMP-9 secretion but had no effect on the production of prostaglandin E2. The phosphorylation of macrophage kinases, including cAMP-dependent protein-serine kinase (PKA) catalytic subunit beta, G protein-coupled receptor-serine kinase 2, mitogen-activated protein-serine kinase p38 alpha (p38a MAPK), extracellular regulated protein-serine kinase 2 (ERK2) and Jun N-terminus protein-serine kinases (JNK), increased following stimulation with cell wall. In summary, our study showed that the P. micros cell wall preparation induced intracellular signaling pathways, leading to an increased production of pro-inflammatory cytokines, chemokines and MMP-9 by macrophages.
{"title":"Peptostreptococcus micros cell wall elicits a pro-inflammatory response in human macrophages.","authors":"Shin-ichi Tanabe, Charles Bodet, Daniel Grenier","doi":"10.1177/0968051907081869","DOIUrl":"https://doi.org/10.1177/0968051907081869","url":null,"abstract":"<p><p>Peptostreptococcus micros is a Gram-positive anaerobic bacterium associated with periodontitis, a chronic inflammatory disease affecting tooth-supporting tissues. In the present study, we investigated the response of human macrophages to stimulation with a cell wall preparation from P. micros. In addition, the effect of the preparation on the phosphorylation of macrophage kinases was studied. The preparation, which was non-toxic for macrophages, significantly increased the secretion of the pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6. It also increased the secretion of two potent chemokines IL-8 and, to a lesser extent, RANTES. Lastly, stimulation of macrophages by the P. micros cell wall preparation induced a significant increase in MMP-9 secretion but had no effect on the production of prostaglandin E2. The phosphorylation of macrophage kinases, including cAMP-dependent protein-serine kinase (PKA) catalytic subunit beta, G protein-coupled receptor-serine kinase 2, mitogen-activated protein-serine kinase p38 alpha (p38a MAPK), extracellular regulated protein-serine kinase 2 (ERK2) and Jun N-terminus protein-serine kinases (JNK), increased following stimulation with cell wall. In summary, our study showed that the P. micros cell wall preparation induced intracellular signaling pathways, leading to an increased production of pro-inflammatory cytokines, chemokines and MMP-9 by macrophages.</p>","PeriodicalId":80292,"journal":{"name":"Journal of endotoxin research","volume":"13 4","pages":"219-26"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0968051907081869","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"27065273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-01-01DOI: 10.1177/0968051907079168
Hans-Peter Hauber, Torsten Goldmann, Ekkehard Vollmer, Barbara Wollenberg, Hsiao-Ling Hung, Roy C Levitt, Peter Zabel
Background: hCLCA1 is a member of the calcium-activated chloride channel family and is associated with disease-inducible mucus expression. Niflumic acid (NFA) and a closely related chemical structure are reported inhibitors of calcium-activated chloride channels and endotoxin-inducible mucus expression in the mouse. Therefore, we tested the hypothesis that hCLCA1 may be involved in lipopolysaccharide (LPS) induced mucin up-regulation in human airways. We also investigated the effect of NFA and MSI-2216 on LPS-induced mucin up-regulation.
Materials and methods: Explanted human airways and the muco-epidermoid cell line Calu-3 were stimulated with LPS. Different concentrations of NFA or MSI-2216 were added to LPS-stimulated airway mucosa and Calu-3 cells. Expression of hCLCA1 and MUC5AC mRNA and protein was quantified in human airways using real-time PCR and PAS staining. In addition, immunohistochemistry was performed for quantification of inflammatory cells (lymphocytes, monocytes, eosinophils, and neutrophils) in the submucosa of the airways. Expression of hCLCA1 protein in Calu-3 cells was analysed by FACS.
Results: LPS significantly induced hCLCA1 and MUC5AC mRNA and protein expression in human airway mucosa (P < 0.05). NFA and MSI-2216 significantly decreased LPS-induced mucus expression in explanted airway mucosa in a dose-dependent manner (P < 0.05). In Calu-3 cells, LPS significantly increased hCLCA1 surface expression whereas intracellular expression was significantly decreased (P < 0.05). In Calu-3 cells, NFA and MSI-2216 also significantly reduced MUC5AC mRNA expression (P < 0.05).
Conclusions: These data suggest that hCLCA1 may play a role in LPS-induced mucin expression in human airway mucosa. Calcium-activated chloride channel inhibitors significantly decreased LPS-induced mucus expression both ex vivo and in vitro . Therefore, blocking of hCLCA1 may offer a therapeutic approach to reduce bacterial-induced mucus hypersecretion.
{"title":"LPS-induced mucin expression in human sinus mucosa can be attenuated by hCLCA inhibitors.","authors":"Hans-Peter Hauber, Torsten Goldmann, Ekkehard Vollmer, Barbara Wollenberg, Hsiao-Ling Hung, Roy C Levitt, Peter Zabel","doi":"10.1177/0968051907079168","DOIUrl":"https://doi.org/10.1177/0968051907079168","url":null,"abstract":"<p><strong>Background: </strong>hCLCA1 is a member of the calcium-activated chloride channel family and is associated with disease-inducible mucus expression. Niflumic acid (NFA) and a closely related chemical structure are reported inhibitors of calcium-activated chloride channels and endotoxin-inducible mucus expression in the mouse. Therefore, we tested the hypothesis that hCLCA1 may be involved in lipopolysaccharide (LPS) induced mucin up-regulation in human airways. We also investigated the effect of NFA and MSI-2216 on LPS-induced mucin up-regulation.</p><p><strong>Materials and methods: </strong>Explanted human airways and the muco-epidermoid cell line Calu-3 were stimulated with LPS. Different concentrations of NFA or MSI-2216 were added to LPS-stimulated airway mucosa and Calu-3 cells. Expression of hCLCA1 and MUC5AC mRNA and protein was quantified in human airways using real-time PCR and PAS staining. In addition, immunohistochemistry was performed for quantification of inflammatory cells (lymphocytes, monocytes, eosinophils, and neutrophils) in the submucosa of the airways. Expression of hCLCA1 protein in Calu-3 cells was analysed by FACS.</p><p><strong>Results: </strong>LPS significantly induced hCLCA1 and MUC5AC mRNA and protein expression in human airway mucosa (P < 0.05). NFA and MSI-2216 significantly decreased LPS-induced mucus expression in explanted airway mucosa in a dose-dependent manner (P < 0.05). In Calu-3 cells, LPS significantly increased hCLCA1 surface expression whereas intracellular expression was significantly decreased (P < 0.05). In Calu-3 cells, NFA and MSI-2216 also significantly reduced MUC5AC mRNA expression (P < 0.05).</p><p><strong>Conclusions: </strong>These data suggest that hCLCA1 may play a role in LPS-induced mucin expression in human airway mucosa. Calcium-activated chloride channel inhibitors significantly decreased LPS-induced mucus expression both ex vivo and in vitro . Therefore, blocking of hCLCA1 may offer a therapeutic approach to reduce bacterial-induced mucus hypersecretion.</p>","PeriodicalId":80292,"journal":{"name":"Journal of endotoxin research","volume":"13 2","pages":"109-16"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0968051907079168","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26820770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-01-01DOI: 10.1177/0968051907079122
Holger Heine, Sabine Gronow, Alla Zamyatina, Paul Kosma, Helmut Brade
The synthetic 1,4'-bisphosphorylated penta-acyl and tetra-acyl lipid A structures representing the major molecular species of natural chlamydial lipid A were tested for their endotoxic activities as measured by interleukin-8 release from human embryonic kidney (HEK) 293 cells expressing Toll-like receptor (TLR) 2 or TLR4. Both compounds were unable to activate HEK293 cells transiently transfected with TLR2. The penta-acyl lipid A was a weak activator of HEK293 cells expressing TLR4/MD-2/CD14 whereas tetra-acyl lipid A was inactive even at high concentrations. The weak activity of the penta-acyl lipid A could be antagonized by the tetra-acyl derivative of Escherichia coli lipid A (compound 406) or the anti-CD14 monoclonal antibody MEM-18. Both, tetra- and pentaacyl lipid A were unable to antagonize the activity of synthetic E. coli-type lipid A (compound 506) or smooth lipopolysaccharide of Salmonella enterica serovar Friedenau. Tetra- and penta-acyl lipid A served as acceptors for Kdo transferases from E. coli, Chlamydia trachomatis and Chlamydophila psittaci as shown by in vitro assays and detection of the products by thin layer chromatography and immune staining with monoclonal antibody.
{"title":"Investigation on the agonistic and antagonistic biological activities of synthetic Chlamydia lipid A and its use in in vitro enzymatic assays.","authors":"Holger Heine, Sabine Gronow, Alla Zamyatina, Paul Kosma, Helmut Brade","doi":"10.1177/0968051907079122","DOIUrl":"https://doi.org/10.1177/0968051907079122","url":null,"abstract":"<p><p>The synthetic 1,4'-bisphosphorylated penta-acyl and tetra-acyl lipid A structures representing the major molecular species of natural chlamydial lipid A were tested for their endotoxic activities as measured by interleukin-8 release from human embryonic kidney (HEK) 293 cells expressing Toll-like receptor (TLR) 2 or TLR4. Both compounds were unable to activate HEK293 cells transiently transfected with TLR2. The penta-acyl lipid A was a weak activator of HEK293 cells expressing TLR4/MD-2/CD14 whereas tetra-acyl lipid A was inactive even at high concentrations. The weak activity of the penta-acyl lipid A could be antagonized by the tetra-acyl derivative of Escherichia coli lipid A (compound 406) or the anti-CD14 monoclonal antibody MEM-18. Both, tetra- and pentaacyl lipid A were unable to antagonize the activity of synthetic E. coli-type lipid A (compound 506) or smooth lipopolysaccharide of Salmonella enterica serovar Friedenau. Tetra- and penta-acyl lipid A served as acceptors for Kdo transferases from E. coli, Chlamydia trachomatis and Chlamydophila psittaci as shown by in vitro assays and detection of the products by thin layer chromatography and immune staining with monoclonal antibody.</p>","PeriodicalId":80292,"journal":{"name":"Journal of endotoxin research","volume":"13 2","pages":"126-32"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0968051907079122","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26820772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An excessive accumulation of anandamide (N-archidonoylethanolamine, AEA) is associated with septic shock. Results of previous studies have suggested that mRNA coding for the AEA degrading enzyme fatty acid amide hydrolase (FAAH), which converts AEA into arachidonic acid and ethanolamine, might be down-regulated in septic shock. We used real-time reverse transcription PCR assays to measure relative FAAH mRNA concentrations in the whole blood of 30 healthy donors and eight sepsis patients to ascertain whether such down-regulation takes place. Our results suggest that concentrations of FAAH mRNA in male and female samples from healthy donors are similar, but that concentrations are significantly lower in sepsis patients. These findings indicate that mRNA expression of FAAH in human whole blood correlates with sepsis, and may be an interesting biomarker for predicting the onset of septic shock.
{"title":"The mRNA expression of fatty acid amide hydrolase in human whole blood correlates with sepsis.","authors":"Masahiro Tanaka, Itaru Yanagihara, Hitoshi Takahashi, Mitsuhide Hamaguchi, Kumiko Nakahira, Ikuhiro Sakata","doi":"10.1177/0968051907078607","DOIUrl":"https://doi.org/10.1177/0968051907078607","url":null,"abstract":"<p><p>An excessive accumulation of anandamide (N-archidonoylethanolamine, AEA) is associated with septic shock. Results of previous studies have suggested that mRNA coding for the AEA degrading enzyme fatty acid amide hydrolase (FAAH), which converts AEA into arachidonic acid and ethanolamine, might be down-regulated in septic shock. We used real-time reverse transcription PCR assays to measure relative FAAH mRNA concentrations in the whole blood of 30 healthy donors and eight sepsis patients to ascertain whether such down-regulation takes place. Our results suggest that concentrations of FAAH mRNA in male and female samples from healthy donors are similar, but that concentrations are significantly lower in sepsis patients. These findings indicate that mRNA expression of FAAH in human whole blood correlates with sepsis, and may be an interesting biomarker for predicting the onset of septic shock.</p>","PeriodicalId":80292,"journal":{"name":"Journal of endotoxin research","volume":"13 1","pages":"35-8"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0968051907078607","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26822621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-01-01DOI: 10.1177/0968051907080429
Laurent Peyrin-Biroulet, Mathias Chamaillard
The nucleotide-binding oligomerisation protein 2 (NOD2) is a sensor for bacterial muramyl dipeptide, which ensures ileal expression of antimicrobial peptides (so-called alpha-defensins) and promotes cytokine and chemokine production by immunocytes and enterocytes. Defective NOD2 signaling pathway and impaired expression of defensins were inextricably linked to the pathogenesis of Crohn's disease, a common form of inflammatory bowel disease. NOD2 and defensin deficiency at the level of the epithelial barrier and gut-associated lymphoid tissue may favour Crohn's disease by failing to protect from enteropathogens and to instruct adaptive immune response in the gut micro-environment. Herein, we provide an overview on the key role of NOD2 and defensins in antigen-presenting function of dendritic cells and antigen-specific immunity. We also outline the urgent need for a better understanding of the regulators of NOD2 function and defensin biogenesis to support the development of a rational immunostimulatory treatment for restoring long-lasting immunity in Crohn's disease.
{"title":"NOD2 and defensins: translating innate to adaptive immunity in Crohn's disease.","authors":"Laurent Peyrin-Biroulet, Mathias Chamaillard","doi":"10.1177/0968051907080429","DOIUrl":"https://doi.org/10.1177/0968051907080429","url":null,"abstract":"<p><p>The nucleotide-binding oligomerisation protein 2 (NOD2) is a sensor for bacterial muramyl dipeptide, which ensures ileal expression of antimicrobial peptides (so-called alpha-defensins) and promotes cytokine and chemokine production by immunocytes and enterocytes. Defective NOD2 signaling pathway and impaired expression of defensins were inextricably linked to the pathogenesis of Crohn's disease, a common form of inflammatory bowel disease. NOD2 and defensin deficiency at the level of the epithelial barrier and gut-associated lymphoid tissue may favour Crohn's disease by failing to protect from enteropathogens and to instruct adaptive immune response in the gut micro-environment. Herein, we provide an overview on the key role of NOD2 and defensins in antigen-presenting function of dendritic cells and antigen-specific immunity. We also outline the urgent need for a better understanding of the regulators of NOD2 function and defensin biogenesis to support the development of a rational immunostimulatory treatment for restoring long-lasting immunity in Crohn's disease.</p>","PeriodicalId":80292,"journal":{"name":"Journal of endotoxin research","volume":"13 3","pages":"135-9"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0968051907080429","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26820773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-01-01DOI: 10.1177/0968051907078604
Min-Fu Tsan, Baochong Gao
Extensive work in recent years has suggested that a number of endogenous molecules, their derivatives or degradation products may be potent activators of the innate immune system capable of inducing pro-inflammatory cytokine production by the monocyte-macrophage system and the activation and maturation of dendritic cells. The cytokine-like effects of these endogenous molecules are mediated via Toll-like receptor (TLR) signal transduction pathways in a manner similar to pathogen-associated molecular patterns (PAMPs). However, recent evidence suggests that the reported cytokine effects of some of these putative endogenous ligands are in fact due to contaminating PAMPs. The reasons for the failure to recognize PAMP contaminants being responsible for the putative TLR ligands of these endogenous molecules include: (i) failure to use highly purified preparations free of PAMP contamination; (ii) failure to recognize the heat sensitivity of lipopolysaccharide (LPS); and (iii) failure to consider contaminant(s) other than LPS. Strategies are proposed to avoid future designation of PAMP contamination as putative endogenous ligands of TLRs.
{"title":"Pathogen-associated molecular pattern contamination as putative endogenous ligands of Toll-like receptors.","authors":"Min-Fu Tsan, Baochong Gao","doi":"10.1177/0968051907078604","DOIUrl":"https://doi.org/10.1177/0968051907078604","url":null,"abstract":"<p><p>Extensive work in recent years has suggested that a number of endogenous molecules, their derivatives or degradation products may be potent activators of the innate immune system capable of inducing pro-inflammatory cytokine production by the monocyte-macrophage system and the activation and maturation of dendritic cells. The cytokine-like effects of these endogenous molecules are mediated via Toll-like receptor (TLR) signal transduction pathways in a manner similar to pathogen-associated molecular patterns (PAMPs). However, recent evidence suggests that the reported cytokine effects of some of these putative endogenous ligands are in fact due to contaminating PAMPs. The reasons for the failure to recognize PAMP contaminants being responsible for the putative TLR ligands of these endogenous molecules include: (i) failure to use highly purified preparations free of PAMP contamination; (ii) failure to recognize the heat sensitivity of lipopolysaccharide (LPS); and (iii) failure to consider contaminant(s) other than LPS. Strategies are proposed to avoid future designation of PAMP contamination as putative endogenous ligands of TLRs.</p>","PeriodicalId":80292,"journal":{"name":"Journal of endotoxin research","volume":"13 1","pages":"6-14"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0968051907078604","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26822059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-01-01DOI: 10.1177/0968051907080428
Meytal Tenenbaum, Abed N Azab, Jacob Kaplanski
Several lines of evidence link inflammation with neurodegenerative diseases, which are aggravated by the age-related decline in estrogen levels in postmenopausal women. Lipopolysaccharide (LPS) is used widely to stimulate glial cells to produce pro-inflammatory mediators such as NO, PGE(2), and TNF-alpha, and was found to be toxic in high doses. We examined the effects of a physiological dose of 17beta-estradiol (E2) against LPS-induced inflammation and toxicity (cell death) in rat primary glial and neuronal cultures. Cultures were treated with 0.1 nM E2 for 24 h and then exposed to LPS 0.5-200 microg/ml for another 24 h. Levels of NO, PGE(2), and TNF-alpha in the culture medium were determined by the Griess reaction assay, radio-immunoassay, and enzyme-linked immunoassay, respectively. Cell death was quantified by measuring the leakage of lactate dehydrogenase (LDH) into the medium from dead or dying cells using the non-radioactive cytotoxicity assay. E2 significantly reduced the LPS-induced increase in NO and TNF-alpha (but not PGE(2)) production in glial cells. PGE(2) and TNF-alpha were undetectable in neuronal cultures, while only basal levels of NO were detected, even after stimulation with LPS. Moreover, pretreatment with E2 significantly reduced LPS-induced cell death, as measured by the release of LDH, in both glial and neuronal cultures. These results suggest that the neuroprotective effects attributed to E2 are derived, at least in part, from its anti-inflammatory and cytoprotective effects in both glial and neuronal cells.
{"title":"Effects of estrogen against LPS-induced inflammation and toxicity in primary rat glial and neuronal cultures.","authors":"Meytal Tenenbaum, Abed N Azab, Jacob Kaplanski","doi":"10.1177/0968051907080428","DOIUrl":"https://doi.org/10.1177/0968051907080428","url":null,"abstract":"<p><p>Several lines of evidence link inflammation with neurodegenerative diseases, which are aggravated by the age-related decline in estrogen levels in postmenopausal women. Lipopolysaccharide (LPS) is used widely to stimulate glial cells to produce pro-inflammatory mediators such as NO, PGE(2), and TNF-alpha, and was found to be toxic in high doses. We examined the effects of a physiological dose of 17beta-estradiol (E2) against LPS-induced inflammation and toxicity (cell death) in rat primary glial and neuronal cultures. Cultures were treated with 0.1 nM E2 for 24 h and then exposed to LPS 0.5-200 microg/ml for another 24 h. Levels of NO, PGE(2), and TNF-alpha in the culture medium were determined by the Griess reaction assay, radio-immunoassay, and enzyme-linked immunoassay, respectively. Cell death was quantified by measuring the leakage of lactate dehydrogenase (LDH) into the medium from dead or dying cells using the non-radioactive cytotoxicity assay. E2 significantly reduced the LPS-induced increase in NO and TNF-alpha (but not PGE(2)) production in glial cells. PGE(2) and TNF-alpha were undetectable in neuronal cultures, while only basal levels of NO were detected, even after stimulation with LPS. Moreover, pretreatment with E2 significantly reduced LPS-induced cell death, as measured by the release of LDH, in both glial and neuronal cultures. These results suggest that the neuroprotective effects attributed to E2 are derived, at least in part, from its anti-inflammatory and cytoprotective effects in both glial and neuronal cells.</p>","PeriodicalId":80292,"journal":{"name":"Journal of endotoxin research","volume":"13 3","pages":"158-66"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0968051907080428","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26822450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}