Hybrid gated recurrent unit bidirectional-long short-term memory model to improve cryptocurrency prediction accuracy

Ferdiansyah Ferdiansyah, S. H. Othman, Raja Zahilah Md Radzi, D. Stiawan, T. Sutikno
{"title":"Hybrid gated recurrent unit bidirectional-long short-term memory model to improve cryptocurrency prediction accuracy","authors":"Ferdiansyah Ferdiansyah, S. H. Othman, Raja Zahilah Md Radzi, D. Stiawan, T. Sutikno","doi":"10.11591/ijai.v12.i1.pp251-261","DOIUrl":null,"url":null,"abstract":"Cryptocurrency is a virtual or digital currency used in financial systems that utilizes blockchain technology and cryptographic functions to gain transparency, decentralization, and conservation. Cryptocurrency prices have a high level of fluctuation; thus, tools are needed to monitor and predict them. RNN is a deep learning model that is capable of strongly predicting data time series. Some types of Recurrent Nureal Network layers, such as Long Short Term Memory, have been used in previous studies to prediction common used currency. In this study, we used the Gate Recurrent Unit and Bidirectional–LSTM hybrid model to predict cryptocurrency prices to improve the accuracy of previously proposed prediction LSTM Model to predict the Bitcoin,  Using four cryptocurrencies (Bitcoin, Ehtereum, Ripple, and Binance), we obtained very good results with RMSE after normalization the results get closer to 0 and with MAPE values all below <10%.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i1.pp251-261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 5

Abstract

Cryptocurrency is a virtual or digital currency used in financial systems that utilizes blockchain technology and cryptographic functions to gain transparency, decentralization, and conservation. Cryptocurrency prices have a high level of fluctuation; thus, tools are needed to monitor and predict them. RNN is a deep learning model that is capable of strongly predicting data time series. Some types of Recurrent Nureal Network layers, such as Long Short Term Memory, have been used in previous studies to prediction common used currency. In this study, we used the Gate Recurrent Unit and Bidirectional–LSTM hybrid model to predict cryptocurrency prices to improve the accuracy of previously proposed prediction LSTM Model to predict the Bitcoin,  Using four cryptocurrencies (Bitcoin, Ehtereum, Ripple, and Binance), we obtained very good results with RMSE after normalization the results get closer to 0 and with MAPE values all below <10%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高加密货币预测精度的混合门控循环单元双向长短期记忆模型
加密货币是金融系统中使用的虚拟或数字货币,它利用区块链技术和加密功能来获得透明度、去中心化和保护。加密货币价格波动较大;因此,需要工具来监视和预测它们。RNN是一种深度学习模型,能够对数据时间序列进行强预测。一些类型的循环神经网络层,如长短期记忆,已经在以前的研究中用于预测常用货币。在本研究中,我们使用门循环单元和双向- LSTM混合模型来预测加密货币价格,以提高先前提出的预测LSTM模型预测比特币的准确性,使用四种加密货币(比特币,以太坊,Ripple和币安),我们获得了非常好的结果,归一化后的RMSE结果更接近于0,MAPE值都低于10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
期刊最新文献
Traffic light counter detection comparison using you only look oncev3 and you only look oncev5 for version 3 and 5 Eligibility of village fund direct cash assistance recipients using artificial neural network Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm Glove based wearable devices for sign language-GloSign Hybrid travel time estimation model for public transit buses using limited datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1