Content-based image retrieval based on corel dataset using deep learning

R. Q. Hassan, Zainab N. Sultani, B. N. Dhannoon
{"title":"Content-based image retrieval based on corel dataset using deep learning","authors":"R. Q. Hassan, Zainab N. Sultani, B. N. Dhannoon","doi":"10.11591/ijai.v12.i4.pp1854-1863","DOIUrl":null,"url":null,"abstract":"A popular technique for retrieving images from huge and unlabeled image databases are content-based-image-retrieval (CBIR). However, the traditional information retrieval techniques do not satisfy users in terms of time consumption and accuracy. Additionally, the number of images accessible to users are growing due to web development and transmission networks. As the result, huge digital image creation occurs in many places. Therefore, quick access to these huge image databases and retrieving images like a query image from these huge image collections provides significant challenges and the need for an effective technique. Feature extraction and similarity measurement are important for the performance of a CBIR technique. This work proposes a simple but efficient deep-learning framework based on convolutional-neural networks (CNN) for the feature extraction phase in CBIR. The proposed CNN aims to reduce the semantic gap between low-level and high-level features. The similarity measurements are used to compute the distance between the query and database image features. When retrieving the first 10 pictures, an experiment on the Corel-1K dataset showed that the average precision was 0.88 with Euclidean distance, which was a big step up from the state-of-the-art approaches.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i4.pp1854-1863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

A popular technique for retrieving images from huge and unlabeled image databases are content-based-image-retrieval (CBIR). However, the traditional information retrieval techniques do not satisfy users in terms of time consumption and accuracy. Additionally, the number of images accessible to users are growing due to web development and transmission networks. As the result, huge digital image creation occurs in many places. Therefore, quick access to these huge image databases and retrieving images like a query image from these huge image collections provides significant challenges and the need for an effective technique. Feature extraction and similarity measurement are important for the performance of a CBIR technique. This work proposes a simple but efficient deep-learning framework based on convolutional-neural networks (CNN) for the feature extraction phase in CBIR. The proposed CNN aims to reduce the semantic gap between low-level and high-level features. The similarity measurements are used to compute the distance between the query and database image features. When retrieving the first 10 pictures, an experiment on the Corel-1K dataset showed that the average precision was 0.88 with Euclidean distance, which was a big step up from the state-of-the-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于corel数据集的深度学习图像检索
从庞大且未标记的图像数据库中检索图像的一种流行技术是基于内容的图像检索(CBIR)。然而,传统的信息检索技术在耗时和准确性方面都不能满足用户的需求。此外,由于web开发和传输网络的发展,用户可以访问的图像数量正在增加。因此,大量的数字图像创作出现在许多地方。因此,快速访问这些庞大的图像数据库并从这些庞大的图像集合中检索图像(如查询图像)提供了重大挑战,并且需要一种有效的技术。特征提取和相似度测量对CBIR技术的性能至关重要。这项工作提出了一个简单而高效的基于卷积神经网络(CNN)的深度学习框架,用于CBIR的特征提取阶段。提出的CNN旨在减少低级和高级特征之间的语义差距。相似性度量用于计算查询和数据库图像特征之间的距离。当检索前10张图片时,在Corel-1K数据集上进行的实验表明,平均精度为0.88,具有欧几里得距离,这比最先进的方法有了很大的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
期刊最新文献
Traffic light counter detection comparison using you only look oncev3 and you only look oncev5 for version 3 and 5 Eligibility of village fund direct cash assistance recipients using artificial neural network Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm Glove based wearable devices for sign language-GloSign Hybrid travel time estimation model for public transit buses using limited datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1