Identification of lactic acid bacteria and rhizobacteria by ultraviolet-visible-near infrared spectroscopy and multivariate classification

IF 1.6 4区 化学 Q3 CHEMISTRY, APPLIED Journal of Near Infrared Spectroscopy Pub Date : 2021-10-01 DOI:10.1177/09670335211035992
S. Treguier, C. Couderc, Marjorie Audonnet, Leïla Mzali, H. Tormo, M. Daveran-Mingot, Hicham Ferhout, D. Kleiber, C. Levasseur-Garcia
{"title":"Identification of lactic acid bacteria and rhizobacteria by ultraviolet-visible-near infrared spectroscopy and multivariate classification","authors":"S. Treguier, C. Couderc, Marjorie Audonnet, Leïla Mzali, H. Tormo, M. Daveran-Mingot, Hicham Ferhout, D. Kleiber, C. Levasseur-Garcia","doi":"10.1177/09670335211035992","DOIUrl":null,"url":null,"abstract":"The biological processes of interest to agro-industry involve numerous bacterial species. Lactic acid bacteria produce metabolites capable of fermenting food products and modifying their organoleptic properties, and plant-growth-promoting rhizobacteria can act as biofertilizers, biostimulants, or biocontrol agents in agriculture. The protocol of conventional techniques for bacterial identification, currently based on genotyping and phenotyping, require specific sample preparation and destruction. The work presented herein details a method for rapid identification of lactic acid bacteria and rhizobacteria at the genus and species level. To develop the method, bacteria were inoculated on an agar medium and analyzed by near infrared (NIR) and ultraviolet-visible-NIR (UV-Vis-NIR) spectroscopy. Artificial neural network models applied to the UV-Vis-NIR spectra correctly identified the genus (species) of 70% (63%) of the lactic acid bacteria and 67% of the rhizobacteria on an independent prediction set of unknown bacterial strains. These results demonstrate the potential of UV-Vis-NIR spectroscopy to identify bacteria directly on agar plates.","PeriodicalId":16551,"journal":{"name":"Journal of Near Infrared Spectroscopy","volume":"18 4 1","pages":"278 - 288"},"PeriodicalIF":1.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Near Infrared Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335211035992","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The biological processes of interest to agro-industry involve numerous bacterial species. Lactic acid bacteria produce metabolites capable of fermenting food products and modifying their organoleptic properties, and plant-growth-promoting rhizobacteria can act as biofertilizers, biostimulants, or biocontrol agents in agriculture. The protocol of conventional techniques for bacterial identification, currently based on genotyping and phenotyping, require specific sample preparation and destruction. The work presented herein details a method for rapid identification of lactic acid bacteria and rhizobacteria at the genus and species level. To develop the method, bacteria were inoculated on an agar medium and analyzed by near infrared (NIR) and ultraviolet-visible-NIR (UV-Vis-NIR) spectroscopy. Artificial neural network models applied to the UV-Vis-NIR spectra correctly identified the genus (species) of 70% (63%) of the lactic acid bacteria and 67% of the rhizobacteria on an independent prediction set of unknown bacterial strains. These results demonstrate the potential of UV-Vis-NIR spectroscopy to identify bacteria directly on agar plates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳酸菌和根瘤菌的紫外-可见-近红外光谱鉴别及多元分类
农业加工业感兴趣的生物过程涉及许多细菌种类。乳酸菌产生的代谢物能够发酵食品并改变其感官特性,促进植物生长的根瘤菌可以作为农业中的生物肥料、生物刺激素或生物防治剂。目前基于基因分型和表型分型的传统细菌鉴定技术方案需要特定的样品制备和销毁。本文详细介绍了一种在属和种水平上快速鉴定乳酸菌和根瘤菌的方法。在琼脂培养基上接种细菌,采用近红外(NIR)和紫外-可见-近红外(UV-Vis-NIR)光谱分析。人工神经网络模型应用于紫外-可见-近红外光谱,在独立的未知菌株预测集上正确识别了70%(63%)乳酸菌属(种)和67%根瘤菌属(种)。这些结果证明了紫外-可见-近红外光谱法在琼脂板上直接鉴定细菌的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
35
审稿时长
6 months
期刊介绍: JNIRS — Journal of Near Infrared Spectroscopy is a peer reviewed journal, publishing original research papers, short communications, review articles and letters concerned with near infrared spectroscopy and technology, its application, new instrumentation and the use of chemometric and data handling techniques within NIR.
期刊最新文献
Non-linear machine learning coupled near infrared spectroscopy enhanced model performance and insights for coffee origin traceability Using visible and near infrared spectroscopy and machine learning for estimating total petroleum hydrocarbons in contaminated soils Detection and classification of spongy tissue disorder in mango fruit during ripening by using visible-near infrared spectroscopy and multivariate analysis A method to standardize the temperature for near infrared spectra of the indigo pigment in non-dairy cream based on symbolic regression Moisture content of Panax notoginseng taproot predicted using near infrared spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1