Structural and morphological characteristics of nanocrystalline copper from acid sulphate electrolytes

IF 1.2 4区 材料科学 Q4 ELECTROCHEMISTRY Transactions of The Institute of Metal Finishing Pub Date : 2015-08-06 DOI:10.1179/0020296715Z.000000000262
R. Sekar
{"title":"Structural and morphological characteristics of nanocrystalline copper from acid sulphate electrolytes","authors":"R. Sekar","doi":"10.1179/0020296715Z.000000000262","DOIUrl":null,"url":null,"abstract":"Copper is the presently favoured and future interconnect material in high-end microprocessors and memory devices because of its low electrical resistivity and higher electromigration than aluminium. The present investigation deals with the electrodeposition of nanocrystalline copper onto brass metallic foil from electrolytes containing copper sulphate (CuSO4·5H2O) as the source of metal ion and sulphuric acid (H2SO4). Benzotriazole (0.5 g L− 1) and sodium lauryl sulphate (0.1 g L− 1) were used as additives. The electrolyte was mechanically agitated and the temperature was maintained at 3°C ± 2°C. These additives have been found to be effective in reducing the grain size, grain boundaries and improving surface morphology of the copper films. They also improve the throwing power of the deposition electrolytes and hardness of deposits. X-ray diffraction (XRD) patterns obtained for the electrodeposited copper films showed polycrystalline cubic structure. The crystal size of the copper films was calculated by ...","PeriodicalId":23268,"journal":{"name":"Transactions of The Institute of Metal Finishing","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Institute of Metal Finishing","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1179/0020296715Z.000000000262","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Copper is the presently favoured and future interconnect material in high-end microprocessors and memory devices because of its low electrical resistivity and higher electromigration than aluminium. The present investigation deals with the electrodeposition of nanocrystalline copper onto brass metallic foil from electrolytes containing copper sulphate (CuSO4·5H2O) as the source of metal ion and sulphuric acid (H2SO4). Benzotriazole (0.5 g L− 1) and sodium lauryl sulphate (0.1 g L− 1) were used as additives. The electrolyte was mechanically agitated and the temperature was maintained at 3°C ± 2°C. These additives have been found to be effective in reducing the grain size, grain boundaries and improving surface morphology of the copper films. They also improve the throwing power of the deposition electrolytes and hardness of deposits. X-ray diffraction (XRD) patterns obtained for the electrodeposited copper films showed polycrystalline cubic structure. The crystal size of the copper films was calculated by ...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硫酸电解质中纳米铜的结构和形态特征
铜是目前和未来高端微处理器和存储设备的互连材料,因为它比铝具有低电阻率和更高的电迁移。研究了以硫酸铜(CuSO4·5H2O)为金属离子源,以硫酸(H2SO4)为电解液,在黄铜金属箔上电沉积纳米铜的方法。添加剂为苯并三唑(0.5 g L−1)和十二烷基硫酸钠(0.1 g L−1)。机械搅拌电解液,温度维持在3℃±2℃。这些添加剂对减小铜膜的晶粒尺寸、晶界和改善其表面形貌有显著的作用。它们还提高了沉积电解质的抛射力和镀层的硬度。电沉积铜膜的x射线衍射(XRD)图显示出多晶立方结构。铜薄膜的晶体尺寸由…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transactions of The Institute of Metal Finishing
Transactions of The Institute of Metal Finishing 工程技术-材料科学:膜
CiteScore
3.40
自引率
10.50%
发文量
62
审稿时长
3 months
期刊介绍: Transactions of the Institute of Metal Finishing provides international peer-reviewed coverage of all aspects of surface finishing and surface engineering, from fundamental research to in-service applications. The coverage is principally concerned with the application of surface engineering and coating technologies to enhance the properties of engineering components and assemblies. These techniques include electroplating and electroless plating and their pre- and post-treatments, thus embracing all cleaning pickling and chemical conversion processes, and also complementary processes such as anodising. Increasingly, other processes are becoming important particularly regarding surface profile, texture, opacity, contact integrity, etc.
期刊最新文献
Comparing brightness of nanocrystalline nickel coating with traditional bright nickel coating and investigation of stereochemistry of brightener molecules Transactions of the institute of materials finishing 2023, volume 101Author Index Annual Contents 2023 Industry News Tribological study on cast iron based, graphite and CNT enriched hybrid HVOF coating from room temperature to 300°C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1