Determining surface structure and stability of ε-Fe2C, χ-Fe5C2, θ-Fe3C and Fe4C phases under carburization environment from combined DFT and atomistic thermodynamic studies

Q1 Materials Science Catalysis Structure & Reactivity Pub Date : 2015-02-01 DOI:10.1179/2055075814Y.0000000007
Shu Zhao, Xingwu Liu, Chun-fang Huo, Yong-wang Li, Jianguo Wang, H. Jiao
{"title":"Determining surface structure and stability of ε-Fe2C, χ-Fe5C2, θ-Fe3C and Fe4C phases under carburization environment from combined DFT and atomistic thermodynamic studies","authors":"Shu Zhao, Xingwu Liu, Chun-fang Huo, Yong-wang Li, Jianguo Wang, H. Jiao","doi":"10.1179/2055075814Y.0000000007","DOIUrl":null,"url":null,"abstract":"Abstract The chemical–physical environment around iron based FTS catalysts under working conditions is used to estimate the influences of carbon containing gases on the surface structures and stability of ε-Fe2C, χ-Fe5C2, θ-Fe3C and Fe4C from combined density functional theory and atomistic–thermodynamic studies. Higher carbon content gas has higher carburization ability; while higher temperature and lower pressure as well as higher H2/CO ratio can suppress carburization ability. Under wide ranging gas environment, ε-Fe2C, χ-Fe5C2 and θ-Fe3C have different morphologies, and the most stable non-stoichiometric termination changes from carbon-poor to carbon-rich (varying surface Fe/C ratio) upon the increase in ΔμC. The most stable surfaces of these carbides have similar surface bonding pattern, and their surface properties are related to some common phenomena of iron based catalysts. For these facets, χ-Fe5C2-(100)-2.25 is most favored for CO adsorption and CH4 formation, followed by θ-Fe3C-(010)-2.33, ε-Fe2C-(121)-2.00 and Fe4C-(100)-3.00, in line with surface work function and the charge of the surface carbon atoms.","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1179/2055075814Y.0000000007","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/2055075814Y.0000000007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 50

Abstract

Abstract The chemical–physical environment around iron based FTS catalysts under working conditions is used to estimate the influences of carbon containing gases on the surface structures and stability of ε-Fe2C, χ-Fe5C2, θ-Fe3C and Fe4C from combined density functional theory and atomistic–thermodynamic studies. Higher carbon content gas has higher carburization ability; while higher temperature and lower pressure as well as higher H2/CO ratio can suppress carburization ability. Under wide ranging gas environment, ε-Fe2C, χ-Fe5C2 and θ-Fe3C have different morphologies, and the most stable non-stoichiometric termination changes from carbon-poor to carbon-rich (varying surface Fe/C ratio) upon the increase in ΔμC. The most stable surfaces of these carbides have similar surface bonding pattern, and their surface properties are related to some common phenomena of iron based catalysts. For these facets, χ-Fe5C2-(100)-2.25 is most favored for CO adsorption and CH4 formation, followed by θ-Fe3C-(010)-2.33, ε-Fe2C-(121)-2.00 and Fe4C-(100)-3.00, in line with surface work function and the charge of the surface carbon atoms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用DFT和原子热力学相结合的方法测定渗碳环境下ε-Fe2C、χ-Fe5C2、θ-Fe3C和Fe4C相的表面结构和稳定性
摘要采用密度泛函理论和原子热力学相结合的研究方法,利用工作条件下铁基FTS催化剂周围的化学物理环境,评价了含碳气体对ε-Fe2C、χ-Fe5C2、θ-Fe3C和Fe4C表面结构和稳定性的影响。碳含量越高的气体渗碳能力越强;而较高的温度和较低的压力以及较高的H2/CO比会抑制渗碳能力。在大范围气体环境下,ε-Fe2C、χ-Fe5C2和θ-Fe3C具有不同的形貌,且随着ΔμC的增加,最稳定的非化学计量终止由贫碳向富碳转变(改变表面Fe/C比值)。这些碳化物最稳定的表面具有相似的表面键合模式,其表面性能与铁基催化剂的一些常见现象有关。从表面功函数和表面碳原子的电荷情况来看,χ-Fe5C2-(100)-2.25最有利于CO的吸附和CH4的生成,其次是θ-Fe3C-(010)-2.33、ε-Fe2C-(121)-2.00和Fe4C-(100)-3.00。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Structure & Reactivity
Catalysis Structure & Reactivity CHEMISTRY, PHYSICAL-
CiteScore
4.80
自引率
0.00%
发文量
0
期刊最新文献
Plasmonic photocatalysis Electrocatalysts Catalysis Catalysis Direct non-oxidative methane conversion in membrane reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1