{"title":"Promoting χ-Fe5C2(100)0.25 with copper – a DFT study","authors":"E. van Steen, M. Claeys","doi":"10.1179/2055075814Y.0000000003","DOIUrl":null,"url":null,"abstract":"Abstract The role of copper in iron based Fischer–Tropsch catalysts was investigated using DFT with χ-Fe5C2(100)0.25 as a model surface. The presence of atomic copper on the iron-rich χ-Fe5C2(100)0.25-surface is more favorable than its presence in surface. Nevertheless, the segregation of copper from the surface yielding fcc-Cu remains an exergonic process. Carbon monoxide at a coverage of 2.2 CO per nm2 stabilizes atomic copper on this surface. The presence of copper results in the redshift in the stretching frequency of adsorbed CO. The mobility of copper atoms was investigated on χ-Fe5C2(100)0.25 in the presence of CO. The hopping frequency is reduced due to the presence of CO, although never enough to avoid formation of fcc-Cu on a shorter time scale than typically required for the formation of hydrocarbons in the Fischer–Tropsch synthesis.","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1179/2055075814Y.0000000003","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/2055075814Y.0000000003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract The role of copper in iron based Fischer–Tropsch catalysts was investigated using DFT with χ-Fe5C2(100)0.25 as a model surface. The presence of atomic copper on the iron-rich χ-Fe5C2(100)0.25-surface is more favorable than its presence in surface. Nevertheless, the segregation of copper from the surface yielding fcc-Cu remains an exergonic process. Carbon monoxide at a coverage of 2.2 CO per nm2 stabilizes atomic copper on this surface. The presence of copper results in the redshift in the stretching frequency of adsorbed CO. The mobility of copper atoms was investigated on χ-Fe5C2(100)0.25 in the presence of CO. The hopping frequency is reduced due to the presence of CO, although never enough to avoid formation of fcc-Cu on a shorter time scale than typically required for the formation of hydrocarbons in the Fischer–Tropsch synthesis.
以χ-Fe5C2(100)0.25为模型面,采用离散傅里叶变换研究了铜在铁基费托催化剂中的作用。原子铜在富铁的χ-Fe5C2(100)0.25表面的存在比在表面的存在更有利。尽管如此,铜从表面的分离产生fcc-Cu仍然是一个随工过程。2.2 CO / nm2的一氧化碳覆盖率稳定了这个表面上的原子铜。铜的存在导致吸附CO的拉伸频率红移。在CO存在下,铜原子的迁移率在χ-Fe5C2(100)0.25上进行了研究。由于CO的存在,跳频降低,尽管不足以避免在比费托合成中形成碳氢化合物通常所需的更短的时间尺度上形成fcc-Cu。