Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery.

The arabidopsis book Pub Date : 2016-09-09 eCollection Date: 2016-01-01 DOI:10.1199/tab.0185
Tepsuda Rungrat, Mariam Awlia, Tim Brown, Riyan Cheng, Xavier Sirault, Jiri Fajkus, Martin Trtilek, Bob Furbank, Murray Badger, Mark Tester, Barry J Pogson, Justin O Borevitz, Pip Wilson
{"title":"Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery.","authors":"Tepsuda Rungrat, Mariam Awlia, Tim Brown, Riyan Cheng, Xavier Sirault, Jiri Fajkus, Martin Trtilek, Bob Furbank, Murray Badger, Mark Tester, Barry J Pogson, Justin O Borevitz, Pip Wilson","doi":"10.1199/tab.0185","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring the photosynthetic performance of plants is a major key to understanding how plants adapt to their growth conditions. Stress tolerance traits have a high genetic complexity as plants are constantly, and unavoidably, exposed to numerous stress factors, which limits their growth rates in the natural environment. <i>Arabidopsis thaliana</i>, with its broad genetic diversity and wide climatic range, has been shown to successfully adapt to stressful conditions to ensure the completion of its life cycle. As a result, <i>A. thaliana</i> has become a robust and renowned plant model system for studying natural variation and conducting gene discovery studies. Genome wide association studies (GWAS) in restructured populations combining natural and recombinant lines is a particularly effective way to identify the genetic basis of complex traits. As most abiotic stresses affect photosynthetic activity, chlorophyll fluorescence measurements are a potential phenotyping technique for monitoring plant performance under stress conditions. This review focuses on the use of chlorophyll fluorescence as a tool to study genetic variation underlying the stress tolerance responses to abiotic stress in <i>A. thaliana</i>.</p>","PeriodicalId":74946,"journal":{"name":"The arabidopsis book","volume":"1 1","pages":"e0185"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042155/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The arabidopsis book","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1199/tab.0185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring the photosynthetic performance of plants is a major key to understanding how plants adapt to their growth conditions. Stress tolerance traits have a high genetic complexity as plants are constantly, and unavoidably, exposed to numerous stress factors, which limits their growth rates in the natural environment. Arabidopsis thaliana, with its broad genetic diversity and wide climatic range, has been shown to successfully adapt to stressful conditions to ensure the completion of its life cycle. As a result, A. thaliana has become a robust and renowned plant model system for studying natural variation and conducting gene discovery studies. Genome wide association studies (GWAS) in restructured populations combining natural and recombinant lines is a particularly effective way to identify the genetic basis of complex traits. As most abiotic stresses affect photosynthetic activity, chlorophyll fluorescence measurements are a potential phenotyping technique for monitoring plant performance under stress conditions. This review focuses on the use of chlorophyll fluorescence as a tool to study genetic variation underlying the stress tolerance responses to abiotic stress in A. thaliana.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用光合成功能表型组分析发现非生物胁迫响应基因。
监测植物的光合作用性能是了解植物如何适应其生长条件的关键。由于植物在自然环境中会不断且不可避免地受到多种胁迫因素的影响,从而限制了其生长速度,因此植物的抗胁迫性状具有很高的遗传复杂性。拟南芥具有广泛的遗传多样性和广泛的气候范围,已被证明能成功适应胁迫条件,以确保完成其生命周期。因此,拟南芥已成为研究自然变异和进行基因发现研究的强大而著名的植物模型系统。在结合了天然品系和重组品系的重组群体中进行全基因组关联研究(GWAS)是确定复杂性状遗传基础的一种特别有效的方法。由于大多数非生物胁迫都会影响光合作用,叶绿素荧光测量是一种潜在的表型技术,可用于监测植物在胁迫条件下的表现。本综述将重点介绍如何利用叶绿素荧光作为一种工具,来研究大连蝙蝠蛾对非生物胁迫的耐受性反应的遗传变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oomycetes Used in Arabidopsis Research. Insights Into the Role of Ubiquitination in Meiosis: Fertility, Adaptation and Plant Breeding. Agrobacterium-mediated plant transformation: biology and applications. Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery. Biotrophy at Its Best: Novel Findings and Unsolved Mysteries of the Arabidopsis-Powdery Mildew Pathosystem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1