Energy Prediction for Mobile Sink Placement by Deep Maxout Network in WSN

IF 0.9 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Advances in Information Technology Pub Date : 2023-01-01 DOI:10.12720/jait.14.1.112-121
Chamandeep Kaur, S. M. Hassen, Mawahib Sharafeldin Adam Boush, Harishchander Anandaram
{"title":"Energy Prediction for Mobile Sink Placement by Deep Maxout Network in WSN","authors":"Chamandeep Kaur, S. M. Hassen, Mawahib Sharafeldin Adam Boush, Harishchander Anandaram","doi":"10.12720/jait.14.1.112-121","DOIUrl":null,"url":null,"abstract":"In a Wireless Sensor Network (WSN), Numerous cost-effective and energy-constrained sensor nodes are typically used. In a typical Wireless Sensor Network, a single Base Station (BS) gathers information from the whole network, which contributes to concerns including latency, network failure, and congestion. The overwhelming proportion of energy consumption, as well as the energy hole limitation, significantly degrades the overall system performance and network lifetime, which is owing to the sensor nodes that are near the BS consuming more energy. To tackle this problem, it’s essential to determine the perfect spot for mobile sink nodes, which minimizes the power consumed and so increases the network's lifespan. In this work, an effective strategy is designed and developed to detect the location of a mobile sink considering factors such as distance, estimated energy, and fairness, using Deep learning-based energy prediction with an adjacency cell score model. In addition, the predicted energy is determined by employing the Deep Maxout Network (DMN). However, a Minimum distance of 137.364, maximal residual energy of 30.903, maximum standardized fairness of 64.426, maximum network duration of 60, and maximum standardized throughput of 60.613 was obtained using the proposed adjacency-based cell score + Deep Maxout Network.","PeriodicalId":36452,"journal":{"name":"Journal of Advances in Information Technology","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jait.14.1.112-121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

In a Wireless Sensor Network (WSN), Numerous cost-effective and energy-constrained sensor nodes are typically used. In a typical Wireless Sensor Network, a single Base Station (BS) gathers information from the whole network, which contributes to concerns including latency, network failure, and congestion. The overwhelming proportion of energy consumption, as well as the energy hole limitation, significantly degrades the overall system performance and network lifetime, which is owing to the sensor nodes that are near the BS consuming more energy. To tackle this problem, it’s essential to determine the perfect spot for mobile sink nodes, which minimizes the power consumed and so increases the network's lifespan. In this work, an effective strategy is designed and developed to detect the location of a mobile sink considering factors such as distance, estimated energy, and fairness, using Deep learning-based energy prediction with an adjacency cell score model. In addition, the predicted energy is determined by employing the Deep Maxout Network (DMN). However, a Minimum distance of 137.364, maximal residual energy of 30.903, maximum standardized fairness of 64.426, maximum network duration of 60, and maximum standardized throughput of 60.613 was obtained using the proposed adjacency-based cell score + Deep Maxout Network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度Maxout网络的无线传感器网络移动Sink放置能量预测
在无线传感器网络(WSN)中,通常使用许多具有成本效益且能量受限的传感器节点。在典型的无线传感器网络中,单个基站(BS)从整个网络收集信息,这会导致延迟、网络故障和拥塞等问题。过高的能量消耗比例以及能量洞限制会显著降低系统的整体性能和网络寿命,这是由于靠近BS的传感器节点消耗更多的能量。为了解决这个问题,确定移动汇聚节点的最佳位置至关重要,这样可以最大限度地减少功耗,从而延长网络的使用寿命。在这项工作中,设计并开发了一种有效的策略,使用基于深度学习的能量预测和邻接单元评分模型,考虑距离、估计能量和公平性等因素来检测移动sink的位置。此外,利用深度最大输出网络(Deep Maxout Network, DMN)确定了预测能量。基于邻接小区评分+深度Maxout网络的最小距离为137.364,最大剩余能量为30.903,最大标准化公平性为64.426,最大网络持续时间为60,最大标准化吞吐量为60.613。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advances in Information Technology
Journal of Advances in Information Technology Computer Science-Information Systems
CiteScore
4.20
自引率
20.00%
发文量
46
期刊最新文献
Energy Prediction for Mobile Sink Placement by Deep Maxout Network in WSN Philippines' Free Wi-Fi Roll-out Project: Safe or Not? Identification of Leaf Disease Using Machine Learning Algorithm for Improving the Agricultural System Ensuring Cloud Data Security Using the Soldier Ant Algorithm Gamelan Melody Generation Using LSTM Networks Controlled by Composition Meter Rules and Special Notes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1