An Automated Deep Learning Framework for Human Identity and Gender Detection

Pub Date : 2023-01-01 DOI:10.12720/jait.14.1.94-101
Afaf Tareef, Hayat Al-Dmour, Afnan Al-Sarayreh
{"title":"An Automated Deep Learning Framework for Human Identity and Gender Detection","authors":"Afaf Tareef, Hayat Al-Dmour, Afnan Al-Sarayreh","doi":"10.12720/jait.14.1.94-101","DOIUrl":null,"url":null,"abstract":"Automated detection of human identity and gender offers several industrial applications in near future, such as monitoring, surveillance, commercial profiling and human computer interaction. In this paper, deep learning techniques have been used to investigate the problem of human identity and gender classification using hand images. First, pre-processing techniques have been applied to enhance the appearance of the hand images. The pre-processed image is passed through the convolution neural network to determine the gander. For identity detection, the network has been trained on the images for the determined gender for better recognition. To further enhance the result, the framework has been implemented using different optimizers and k fold cross-validation. Experimental results have shown that highly effective performance is achieved in both the human identification and gender classification objectives. High average accuracy of 97.75% using the dorsal hand side for human identification and 96.79% has been obtained for gender classification using the palm hand side. Conclusively, the proposed method has achieved more accuracy than the previous methods both for identification and gender classification.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jait.14.1.94-101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automated detection of human identity and gender offers several industrial applications in near future, such as monitoring, surveillance, commercial profiling and human computer interaction. In this paper, deep learning techniques have been used to investigate the problem of human identity and gender classification using hand images. First, pre-processing techniques have been applied to enhance the appearance of the hand images. The pre-processed image is passed through the convolution neural network to determine the gander. For identity detection, the network has been trained on the images for the determined gender for better recognition. To further enhance the result, the framework has been implemented using different optimizers and k fold cross-validation. Experimental results have shown that highly effective performance is achieved in both the human identification and gender classification objectives. High average accuracy of 97.75% using the dorsal hand side for human identification and 96.79% has been obtained for gender classification using the palm hand side. Conclusively, the proposed method has achieved more accuracy than the previous methods both for identification and gender classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
一个用于人类身份和性别检测的自动深度学习框架
在不久的将来,人类身份和性别的自动检测提供了几个工业应用,如监控,监视,商业分析和人机交互。在本文中,深度学习技术被用于研究人类身份和性别分类的问题。首先,采用预处理技术增强了手图像的外观。预处理后的图像通过卷积神经网络来确定性别。在身份检测方面,网络对已确定性别的图像进行训练,以获得更好的识别效果。为了进一步增强结果,该框架使用了不同的优化器和k倍交叉验证来实现。实验结果表明,该方法在人的识别和性别分类目标上都取得了很好的效果。使用手背侧进行人体识别的平均准确率为97.75%,使用手掌侧进行性别分类的平均准确率为96.79%。总之,该方法在识别和性别分类方面都比以往的方法取得了更高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1