Using Artificial Neural Network to Test Image Covert Communication Effect

Pub Date : 2023-01-01 DOI:10.12720/jait.14.4.741-748
Caswell Nkuna, Ebenezer Esenogho, R. Heymann, E. Matlotse
{"title":"Using Artificial Neural Network to Test Image Covert Communication Effect","authors":"Caswell Nkuna, Ebenezer Esenogho, R. Heymann, E. Matlotse","doi":"10.12720/jait.14.4.741-748","DOIUrl":null,"url":null,"abstract":"—Hacking social or personal information is rising, and data security is given serious attention in any organization. There are several data security strategies depending on what areas it is applied to, for instance, voice, image, or video. Image is the main focus of this paper; hence, this paper proposed and implemented an image steganography (covert communication) technique that does not break existing image recognition neural network systems. This technique enables data to be hidden in a cover image while the image recognition Artificial Neural Network (ANN) checks the presence of any visible alterations on the stego-image. Two different image steganography methods were tested: Least Significant Bit (LSB) and proposed Discrete Cosine Transform (DCT) LSB-2. The resulting stego-images were analyzed using a neural network implemented in the Keras TensorFlow soft tool. The results showed that the proposed DCT LSB-2 encoding method allows a high data payload and minimizes visible alterations, keeping the neural network’s efficiency at a maximum. An optimum ratio for encoding data in an image was determined to maintain the high robustness of the steganography system. This proposed method has shown improved stego-system performance compared to the previous techniques.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jait.14.4.741-748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

—Hacking social or personal information is rising, and data security is given serious attention in any organization. There are several data security strategies depending on what areas it is applied to, for instance, voice, image, or video. Image is the main focus of this paper; hence, this paper proposed and implemented an image steganography (covert communication) technique that does not break existing image recognition neural network systems. This technique enables data to be hidden in a cover image while the image recognition Artificial Neural Network (ANN) checks the presence of any visible alterations on the stego-image. Two different image steganography methods were tested: Least Significant Bit (LSB) and proposed Discrete Cosine Transform (DCT) LSB-2. The resulting stego-images were analyzed using a neural network implemented in the Keras TensorFlow soft tool. The results showed that the proposed DCT LSB-2 encoding method allows a high data payload and minimizes visible alterations, keeping the neural network’s efficiency at a maximum. An optimum ratio for encoding data in an image was determined to maintain the high robustness of the steganography system. This proposed method has shown improved stego-system performance compared to the previous techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
利用人工神经网络测试图像隐蔽通信效果
——黑客攻击社会或个人信息的现象正在增加,任何组织都非常重视数据安全。根据应用领域的不同,有几种数据安全策略,例如语音、图像或视频。图像是本文研究的重点;因此,本文提出并实现了一种不会破坏现有图像识别神经网络系统的图像隐写(隐蔽通信)技术。这种技术可以将数据隐藏在封面图像中,同时图像识别人工神经网络(ANN)检查隐藏图像上是否存在任何可见的变化。测试了两种不同的图像隐写方法:最低有效位(LSB)和提出的离散余弦变换(DCT) LSB-2。生成的隐写图像使用Keras TensorFlow软工具中实现的神经网络进行分析。结果表明,所提出的DCT LSB-2编码方法具有较高的数据负载和最小的可见变化,使神经网络的效率保持在最高水平。确定了图像中编码数据的最佳比例,以保持隐写系统的高鲁棒性。与以前的方法相比,该方法已显示出改进的隐写系统性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1