Shuai Li, Zijie Dai, Xiang Gao, Tao Zhan, Zhao Delong, Cheng Gong, Weiwei Liu
{"title":"Low-loss terahertz waveguide and its imaging application","authors":"Shuai Li, Zijie Dai, Xiang Gao, Tao Zhan, Zhao Delong, Cheng Gong, Weiwei Liu","doi":"10.11972/J.ISSN.1001-9014.2019.01.012","DOIUrl":null,"url":null,"abstract":"High-performance terahertz functional devices have great significance in the generation,transmission and detection of terahertz waves. This paper reports a Kagome-type low-loss terahertz waveguide and its imaging applications. Firstly,anti-resonant waveguide theory was used to design a Kagome terahertz waveguide with low loss transmission at 0. 1 THz,which has a theoretical loss as low as 0. 012 cm -1 . Secondly,the waveguide was fabricated by 3D printing technology. The experimental loss is 0. 015 3 cm ,and the beam divergence angle at the end of the waveguide is about 6 ± 0. 5 degree. Finally,a reconfigurable terahertz imaging system was set up based on the waveguide,which realizes reflection and transmission imaging for a hidden blade and ore respectively. This technology has great application prospects in the underground long-distance exploration.","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":"38 1","pages":"0168"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"红外与毫米波学报","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.11972/J.ISSN.1001-9014.2019.01.012","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
High-performance terahertz functional devices have great significance in the generation,transmission and detection of terahertz waves. This paper reports a Kagome-type low-loss terahertz waveguide and its imaging applications. Firstly,anti-resonant waveguide theory was used to design a Kagome terahertz waveguide with low loss transmission at 0. 1 THz,which has a theoretical loss as low as 0. 012 cm -1 . Secondly,the waveguide was fabricated by 3D printing technology. The experimental loss is 0. 015 3 cm ,and the beam divergence angle at the end of the waveguide is about 6 ± 0. 5 degree. Finally,a reconfigurable terahertz imaging system was set up based on the waveguide,which realizes reflection and transmission imaging for a hidden blade and ore respectively. This technology has great application prospects in the underground long-distance exploration.