首页 > 最新文献

红外与毫米波学报最新文献

英文 中文
LiDAR waveform decomposition based on modified differential evolution algorithm 基于改进差分进化算法的激光雷达波形分解
IF 0.7 4区 物理与天体物理 Q4 OPTICS Pub Date : 2021-01-01 DOI: 10.11972/J.ISSN.1001-9014.2021.03.015
Lai Xu-dong, Yuan Yi-fei, XU Jing-zhong, Wang Ming-Wei
{"title":"LiDAR waveform decomposition based on modified differential evolution algorithm","authors":"Lai Xu-dong, Yuan Yi-fei, XU Jing-zhong, Wang Ming-Wei","doi":"10.11972/J.ISSN.1001-9014.2021.03.015","DOIUrl":"https://doi.org/10.11972/J.ISSN.1001-9014.2021.03.015","url":null,"abstract":"","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":"40 1","pages":"381"},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66394987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effective enhancement of the photoluminescence from the Si + /Ni + ions co-implanted SOI by directly constructing the nanodisk photonic crystals 直接构建纳米片光子晶体,有效增强Si + /Ni +离子共注入SOI的光致发光
IF 0.7 4区 物理与天体物理 Q4 OPTICS Pub Date : 2021-01-01 DOI: 10.11972/J.ISSN.1001-9014.2021.05.015
Tong Hao-Chen, Tang Shu-min, YE Shu-Ming, Duan Xiao-xiao, Li Xiao-nan, Xie Ji-Yang, Zhang Lu-Ran, Yang Jie, Qiu Feng, Wang Rong-Fei, Wen Xiao-ming, Yang Yu, Cui Hao-yang, W. Chong
{"title":"Effective enhancement of the photoluminescence from the Si + /Ni + ions co-implanted SOI by directly constructing the nanodisk photonic crystals","authors":"Tong Hao-Chen, Tang Shu-min, YE Shu-Ming, Duan Xiao-xiao, Li Xiao-nan, Xie Ji-Yang, Zhang Lu-Ran, Yang Jie, Qiu Feng, Wang Rong-Fei, Wen Xiao-ming, Yang Yu, Cui Hao-yang, W. Chong","doi":"10.11972/J.ISSN.1001-9014.2021.05.015","DOIUrl":"https://doi.org/10.11972/J.ISSN.1001-9014.2021.05.015","url":null,"abstract":"","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":"40 1","pages":"680"},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66395140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infrared and visible image fusion based on edge-preserving and attention generative adversarial network 基于边缘保持和注意力生成对抗网络的红外与可见光图像融合
IF 0.7 4区 物理与天体物理 Q4 OPTICS Pub Date : 2021-01-01 DOI: 10.11972/J.ISSN.1001-9014.2021.05.017
Zhu Wen-Qing, Tang Xin-yi, Zhang Rui, C. Xiao, Miao Zhuang
{"title":"Infrared and visible image fusion based on edge-preserving and attention generative adversarial network","authors":"Zhu Wen-Qing, Tang Xin-yi, Zhang Rui, C. Xiao, Miao Zhuang","doi":"10.11972/J.ISSN.1001-9014.2021.05.017","DOIUrl":"https://doi.org/10.11972/J.ISSN.1001-9014.2021.05.017","url":null,"abstract":"","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":"40 1","pages":"696"},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66395199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Quantum well micropillar arrays with low filling factor for enhanced infrared absorption 低填充系数量子阱微柱阵列增强红外吸收
IF 0.7 4区 物理与天体物理 Q4 OPTICS Pub Date : 2021-01-01 DOI: 10.11972/J.ISSN.1001-9014.2021.01.001
Ye Xin-Hui, X. Tian, Xia Hui, Chen Xi-Ren, Li Ju-Zhu, Zhang Shuai-Jun, Jiang Xin-Yang, Deng Wei-jie, Wang Wenjing, Li Yu-Ying, Liu Weiwei, Liu Fang, Li Tian-Xin
{"title":"Quantum well micropillar arrays with low filling factor for enhanced infrared absorption","authors":"Ye Xin-Hui, X. Tian, Xia Hui, Chen Xi-Ren, Li Ju-Zhu, Zhang Shuai-Jun, Jiang Xin-Yang, Deng Wei-jie, Wang Wenjing, Li Yu-Ying, Liu Weiwei, Liu Fang, Li Tian-Xin","doi":"10.11972/J.ISSN.1001-9014.2021.01.001","DOIUrl":"https://doi.org/10.11972/J.ISSN.1001-9014.2021.01.001","url":null,"abstract":"","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":"40 1","pages":"1"},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66394856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hyperspectral image classification combing local binary patterns and k-nearest neighbors algorithm 结合局部二值模式和k近邻算法的高光谱图像分类
IF 0.7 4区 物理与天体物理 Q4 OPTICS Pub Date : 2021-01-01 DOI: 10.11972/J.ISSN.1001-9014.2021.03.017
Zhao Jin-ling, Hu Lei, Yan Hao, Chu Guo-Min, Fang Yan, Huang Linsheng
{"title":"Hyperspectral image classification combing local binary patterns and k-nearest neighbors algorithm","authors":"Zhao Jin-ling, Hu Lei, Yan Hao, Chu Guo-Min, Fang Yan, Huang Linsheng","doi":"10.11972/J.ISSN.1001-9014.2021.03.017","DOIUrl":"https://doi.org/10.11972/J.ISSN.1001-9014.2021.03.017","url":null,"abstract":"","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":"40 1","pages":"400"},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66395047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
全国红外技术及其应用技术峰会 National Infrared Technology and Application Technology Summit
IF 0.7 4区 物理与天体物理 Q4 OPTICS Pub Date : 2020-10-01 DOI: 10.3724/sp.j.7103066143
{"title":"全国红外技术及其应用技术峰会","authors":"","doi":"10.3724/sp.j.7103066143","DOIUrl":"https://doi.org/10.3724/sp.j.7103066143","url":null,"abstract":"","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49317108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
第七届国际新型光电探测技术及其应用研讨会 第七届国际新型光电探测技术及其应用研讨会
IF 0.7 4区 物理与天体物理 Q4 OPTICS Pub Date : 2020-06-01 DOI: 10.3724/sp.j.7103066144
{"title":"第七届国际新型光电探测技术及其应用研讨会","authors":"","doi":"10.3724/sp.j.7103066144","DOIUrl":"https://doi.org/10.3724/sp.j.7103066144","url":null,"abstract":"","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47732517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An automatic method for impervious surface area extraction by fusing high-resolution night light and Landsat OLI images 一种融合高分辨率夜光和Landsat OLI图像的不透水面自动提取方法
IF 0.7 4区 物理与天体物理 Q4 OPTICS Pub Date : 2020-01-01 DOI: 10.11972/J.ISSN.1001-9014.2020.01.017
Tang Peng-fei, Miao Zelang, Lin Cong, Duan Pei-jun, Guo Shan-Chuan
Supervised classification is a vital approach to extract impervious surface areas(ISA)from satellite images,but the training samples need to be provided through heavy manual work. To address it,this study proposed an automatic method to generate training samples from high-resolution night light data,considering that nighttime lights generated by human activities is strongly correlated with impervious surface. First,positive and negative samples for ISA were located according to the distribu‐ tion of nighttime lights. Second,the feature sets were constructed by calculating the spectral and tex‐ ture feature from the OLI images. Third,an ensemble ELM classifier was selected for ISA classifica‐ tion and extraction. Four large cities were selected as study areas to examine the performance of the 文章编号:1001-9014(2020)01-0128-09 DOI:10. 11972/j. issn. 1001-9014. 2020. 01. 017 收稿日期:2019-08-16,修回日期:2019-12-16 Received date:2019-08-16,Revised date:2019-12-16 基金项目:国家自然科学基金重点项目(41631176) Foundation items:Supported by the National Natural Science Foundation of China(41631176) 作者简介(Biography):唐鹏飞(1997-),男,安徽合肥人,博士生,主要研究领域为遥感图像智能处理 . E-mail:Sgos_tpf@smail. nju. edu. cn *通讯作者(Corresponding author):zelang. miao@csu. edu. cn;dupjrs@126. com 1期 唐鹏飞 等:融合高分夜光和Landsat OLI影像的不透水面自动提取方法 proposed method in different environment. The results show that the proposed method can automatical‐ ly and accurately acquire ISA with an overall accuracy higher than 93% and Kappa coefficient higher than 0. 87. Furthermore,comparative experiments by biophysical composition index(BCI)and classi‐ fication by manual sample were conducted to evaluate its superiority. The results show that our method has better separability for ISA and soil than the BCI. In general,the proposed method is superior to manual methods,except Harbin mostly because some impervious surfaces with weak light intensity are selected as negative samples.
监督分类是从卫星图像中提取不透水面区域的重要方法,但训练样本需要通过大量的人工工作来提供。为此,考虑到人类活动产生的夜间灯光与不透水地表密切相关,本研究提出了一种从高分辨率夜间灯光数据中自动生成训练样本的方法。首先,根据夜间灯光的分布定位ISA阳性和阴性样品。其次,通过计算OLI图像的光谱特征和纹理特征来构建特征集;第三,选择集成ELM分类器进行ISA分类和提取。选取4个大城市作为研究区域,检验该系统的绩效。中文译文:中文译文:01-0128-09 (2020)DOI:10。11972 / j。石头。1001 - 9014。2020. 01. 017收稿日期:2019-08-16,修回日期:2019-12-16收到日期:2019-08-16,修订日期:2019-12-16基金项目:国家自然科学基金重点项目(41631176)基金会项目:支持由中国国家自然科学基金(41631176)作者简介(传记):唐鹏飞(1997 -),男,安徽合肥人,博士生,主要研究领域为遥感图像智能处理。电子邮件:Sgos_tpf@smail。nju。edu。cn *通讯作者:泽朗。miao@csu。edu。cn; dupjrs@126。com 1期唐鹏飞等:融合高分夜光和陆地卫星奥利影像的不透水面自动提取方法该方法在不同的环境。结果表明,该方法能够自动准确地获取ISA,总体精度大于93%,Kappa系数大于0。87. 并通过生物物理成分指数(BCI)和人工样本分类的对比实验来评价其优越性。结果表明,该方法对ISA和土壤的分离性优于BCI。总的来说,本文方法优于人工方法,除了哈尔滨,主要是因为选择了一些光强较弱的不透水表面作为负样本。
{"title":"An automatic method for impervious surface area extraction by fusing high-resolution night light and Landsat OLI images","authors":"Tang Peng-fei, Miao Zelang, Lin Cong, Duan Pei-jun, Guo Shan-Chuan","doi":"10.11972/J.ISSN.1001-9014.2020.01.017","DOIUrl":"https://doi.org/10.11972/J.ISSN.1001-9014.2020.01.017","url":null,"abstract":"Supervised classification is a vital approach to extract impervious surface areas(ISA)from satellite images,but the training samples need to be provided through heavy manual work. To address it,this study proposed an automatic method to generate training samples from high-resolution night light data,considering that nighttime lights generated by human activities is strongly correlated with impervious surface. First,positive and negative samples for ISA were located according to the distribu‐ tion of nighttime lights. Second,the feature sets were constructed by calculating the spectral and tex‐ ture feature from the OLI images. Third,an ensemble ELM classifier was selected for ISA classifica‐ tion and extraction. Four large cities were selected as study areas to examine the performance of the 文章编号:1001-9014(2020)01-0128-09 DOI:10. 11972/j. issn. 1001-9014. 2020. 01. 017 收稿日期:2019-08-16,修回日期:2019-12-16 Received date:2019-08-16,Revised date:2019-12-16 基金项目:国家自然科学基金重点项目(41631176) Foundation items:Supported by the National Natural Science Foundation of China(41631176) 作者简介(Biography):唐鹏飞(1997-),男,安徽合肥人,博士生,主要研究领域为遥感图像智能处理 . E-mail:Sgos_tpf@smail. nju. edu. cn *通讯作者(Corresponding author):zelang. miao@csu. edu. cn;dupjrs@126. com 1期 唐鹏飞 等:融合高分夜光和Landsat OLI影像的不透水面自动提取方法 proposed method in different environment. The results show that the proposed method can automatical‐ ly and accurately acquire ISA with an overall accuracy higher than 93% and Kappa coefficient higher than 0. 87. Furthermore,comparative experiments by biophysical composition index(BCI)and classi‐ fication by manual sample were conducted to evaluate its superiority. The results show that our method has better separability for ISA and soil than the BCI. In general,the proposed method is superior to manual methods,except Harbin mostly because some impervious surfaces with weak light intensity are selected as negative samples.","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":"39 1","pages":"128"},"PeriodicalIF":0.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66394683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Identification and measurement of cutaneous melanoma superficial spreading depth using microscopic hyperspectral imaging technology 使用显微高光谱成像技术识别和测量皮肤黑色素瘤表面扩散深度
IF 0.7 4区 物理与天体物理 Q4 OPTICS Pub Date : 2020-01-01 DOI: 10.11972/J.ISSN.1001-9014.2020.06.013
Wan Jian-sheng, Liao Qing-li, Zhou Mei, Sun Li, Hu Meng-han, Lyu Yue, Chu Jun-hao
{"title":"Identification and measurement of cutaneous melanoma superficial spreading depth using microscopic hyperspectral imaging technology","authors":"Wan Jian-sheng, Liao Qing-li, Zhou Mei, Sun Li, Hu Meng-han, Lyu Yue, Chu Jun-hao","doi":"10.11972/J.ISSN.1001-9014.2020.06.013","DOIUrl":"https://doi.org/10.11972/J.ISSN.1001-9014.2020.06.013","url":null,"abstract":"","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":"39 1","pages":"749"},"PeriodicalIF":0.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66395235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Salience region super-resolution reconstruction algorithm for infrared images based on sparse coding 基于稀疏编码的红外图像显著区超分辨率重建算法
IF 0.7 4区 物理与天体物理 Q4 OPTICS Pub Date : 2020-01-01 DOI: 10.11972/J.ISSN.1001-9014.2020.03.018
Hu Shuo, Hu Yong, Gong Cai-lan, Zheng Fu-Qiang
Due to the limitations of infrared optical diffraction and infrared detectors,the noise of infra‐ red images is relatively large and the resolution is low. Super-resolution reconstruction of infrared im‐ ages improves image resolution,but at the same time enhances the noise of background. Aiming at this problem,a salience region super-resolution reconstruction algorithm for infrared images based on sparse coding is proposed. By combining the saliency detection and the super-segment reconstruction, it improves the target definition and reduces the background noise. Firstly,image feature is extracted by double-layer convolution,and image patches with large entropy are adaptively selected for training the joint dictionary. Sparse features are used to calculate the saliency to obtain salient regions,which reconstructs image patches in saliency region by the trained dictionary while the background region adopts Gaussian filtering. Experimental results show that the improved reconstruction algorithm is bet‐ ter than ScSR and SRCNN under the same conditions. The image signal-to-noise ratio is increased by 3-4 times.
由于红外光学衍射和红外探测器的限制,红外图像的噪声较大,分辨率较低。红外图像的超分辨率重建提高了图像的分辨率,但同时也增强了背景噪声。针对这一问题,提出了一种基于稀疏编码的红外图像显著区超分辨率重建算法。将显著性检测与超片段重建相结合,提高了目标清晰度,降低了背景噪声。首先,通过双层卷积提取图像特征,自适应选择熵大的图像块进行联合字典的训练;利用稀疏特征计算显著性获得显著区域,通过训练好的字典在显著区域重建图像斑块,背景区域采用高斯滤波。实验结果表明,在相同条件下,改进后的重建算法比ScSR和SRCNN的重建效果要好。图像信噪比提高3-4倍。
{"title":"Salience region super-resolution reconstruction algorithm for infrared images based on sparse coding","authors":"Hu Shuo, Hu Yong, Gong Cai-lan, Zheng Fu-Qiang","doi":"10.11972/J.ISSN.1001-9014.2020.03.018","DOIUrl":"https://doi.org/10.11972/J.ISSN.1001-9014.2020.03.018","url":null,"abstract":"Due to the limitations of infrared optical diffraction and infrared detectors,the noise of infra‐ red images is relatively large and the resolution is low. Super-resolution reconstruction of infrared im‐ ages improves image resolution,but at the same time enhances the noise of background. Aiming at this problem,a salience region super-resolution reconstruction algorithm for infrared images based on sparse coding is proposed. By combining the saliency detection and the super-segment reconstruction, it improves the target definition and reduces the background noise. Firstly,image feature is extracted by double-layer convolution,and image patches with large entropy are adaptively selected for training the joint dictionary. Sparse features are used to calculate the saliency to obtain salient regions,which reconstructs image patches in saliency region by the trained dictionary while the background region adopts Gaussian filtering. Experimental results show that the improved reconstruction algorithm is bet‐ ter than ScSR and SRCNN under the same conditions. The image signal-to-noise ratio is increased by 3-4 times.","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":"39 1","pages":"388"},"PeriodicalIF":0.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66394542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
红外与毫米波学报
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1