Infrared thermal image ROI extraction algorithm based on fusion of multi-modal feature maps

IF 0.6 4区 物理与天体物理 Q4 OPTICS 红外与毫米波学报 Pub Date : 2019-01-01 DOI:10.11972/j.issn.1001-9014.2019.01.019
Li Zhu, Jing Zhang, Yingxia Fu, Hui Shen, Shouming Zhang, Xianggong Hong
{"title":"Infrared thermal image ROI extraction algorithm based on fusion of multi-modal feature maps","authors":"Li Zhu, Jing Zhang, Yingxia Fu, Hui Shen, Shouming Zhang, Xianggong Hong","doi":"10.11972/j.issn.1001-9014.2019.01.019","DOIUrl":null,"url":null,"abstract":"Infrared thermal image region of interest ( ROI) extraction has important significance for fault detection,target tracking and so on. In order to solve the problems of many infrared thermal image disturbances,artificial markers and low accuracy,a ROI of infrared thermal image extraction algorithm based on fusion of multi-modal feature map is proposed. Multi-modal feature maps are constructed by contrast,entropy,and gradient features,and region filling is performed to achieve ROI extraction. New algorithm is applied to actual collected photovoltaic solar panel image. Simulation results show that the proposed algorithm has high average precision ( 93. 0553% ) ,high average recall ( 90. 2841% ) , F1 index and J index are better than Grab Cut,less artificial marks,etc. . It can be effectively used for ROI extraction of infrared thermal images.","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"红外与毫米波学报","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.11972/j.issn.1001-9014.2019.01.019","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 3

Abstract

Infrared thermal image region of interest ( ROI) extraction has important significance for fault detection,target tracking and so on. In order to solve the problems of many infrared thermal image disturbances,artificial markers and low accuracy,a ROI of infrared thermal image extraction algorithm based on fusion of multi-modal feature map is proposed. Multi-modal feature maps are constructed by contrast,entropy,and gradient features,and region filling is performed to achieve ROI extraction. New algorithm is applied to actual collected photovoltaic solar panel image. Simulation results show that the proposed algorithm has high average precision ( 93. 0553% ) ,high average recall ( 90. 2841% ) , F1 index and J index are better than Grab Cut,less artificial marks,etc. . It can be effectively used for ROI extraction of infrared thermal images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多模态特征图融合的红外热图像ROI提取算法
红外热图像感兴趣区域(ROI)提取对于故障检测、目标跟踪等具有重要意义。为了解决红外热图像干扰多、人工标记和精度低等问题,提出了一种基于多模态特征映射融合的红外热图像ROI提取算法。通过对比、熵和梯度特征构建多模态特征图,并进行区域填充,实现ROI提取。将新算法应用于实际采集的光伏太阳能板图像。仿真结果表明,该算法具有较高的平均精度(93。0553%),平均召回率高(90。2841%), F1指数和J指数优于Grab Cut,人工标记少等。它可以有效地用于红外热图像的ROI提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
4258
审稿时长
2.9 months
期刊介绍:
期刊最新文献
Quantum well micropillar arrays with low filling factor for enhanced infrared absorption LiDAR waveform decomposition based on modified differential evolution algorithm Hyperspectral image classification combing local binary patterns and k-nearest neighbors algorithm Effective enhancement of the photoluminescence from the Si + /Ni + ions co-implanted SOI by directly constructing the nanodisk photonic crystals Infrared and visible image fusion based on edge-preserving and attention generative adversarial network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1