Fusion method for infrared and other-type images based on the multi-scale Gaussian filtering and morphological transform

IF 0.6 4区 物理与天体物理 Q4 OPTICS 红外与毫米波学报 Pub Date : 2020-01-01 DOI:10.11972/J.ISSN.1001-9014.2020.06.021
Li Zhi-jian, Yang Feng-bao, Gao Yu-bin, J. Linna, Hu Peng
{"title":"Fusion method for infrared and other-type images based on the multi-scale Gaussian filtering and morphological transform","authors":"Li Zhi-jian, Yang Feng-bao, Gao Yu-bin, J. Linna, Hu Peng","doi":"10.11972/J.ISSN.1001-9014.2020.06.021","DOIUrl":null,"url":null,"abstract":"To ensure the fusion quality and efficiency simultaneously,a novel image fusion method based on multi-scale Gaussian filtering and morphological transform is proposed. The multi-scale Gaussian filtering is de⁃ signed to decompose the source images into a series of detail images and approximation images. The multi-scale topand bottom-hat decompositions are used respectively to fully extract the bright and dark details of different scales in each approximation image. The multi-scale morphological innerand outer-boundary decompositions are constructed to fully extract boundary information in each detail image. Experimental results demonstrate that the proposed method is comparable to or even better in comparison with typical multi-scale decomposition-based fu⁃ sion methods. Additionally,the method operates much faster than some advanced multi-scale decompositionbased methods like NSCT and NSST.","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":"39 1","pages":"810"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"红外与毫米波学报","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.11972/J.ISSN.1001-9014.2020.06.021","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2

Abstract

To ensure the fusion quality and efficiency simultaneously,a novel image fusion method based on multi-scale Gaussian filtering and morphological transform is proposed. The multi-scale Gaussian filtering is de⁃ signed to decompose the source images into a series of detail images and approximation images. The multi-scale topand bottom-hat decompositions are used respectively to fully extract the bright and dark details of different scales in each approximation image. The multi-scale morphological innerand outer-boundary decompositions are constructed to fully extract boundary information in each detail image. Experimental results demonstrate that the proposed method is comparable to or even better in comparison with typical multi-scale decomposition-based fu⁃ sion methods. Additionally,the method operates much faster than some advanced multi-scale decompositionbased methods like NSCT and NSST.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度高斯滤波和形态学变换的红外与其他类型图像融合方法
为了保证图像融合的质量和效率,提出了一种基于多尺度高斯滤波和形态学变换的图像融合方法。设计了多尺度高斯滤波,将源图像分解为一系列细节图像和近似图像。分别采用多尺度顶帽分解和底帽分解,充分提取每个近似图像中不同尺度的明暗细节。构造多尺度形态学内外边界分解,充分提取每个细节图像中的边界信息。实验结果表明,该方法与典型的基于多尺度分解的滤波方法相当,甚至更好。此外,该方法的运行速度比一些先进的基于多尺度分解的方法(如NSCT和NSST)快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
4258
审稿时长
2.9 months
期刊介绍:
期刊最新文献
Quantum well micropillar arrays with low filling factor for enhanced infrared absorption LiDAR waveform decomposition based on modified differential evolution algorithm Hyperspectral image classification combing local binary patterns and k-nearest neighbors algorithm Effective enhancement of the photoluminescence from the Si + /Ni + ions co-implanted SOI by directly constructing the nanodisk photonic crystals Infrared and visible image fusion based on edge-preserving and attention generative adversarial network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1