The effectiveness of step feeding strategies in sequencing batch reactor for a single-stage deammonification of high strength ammonia wastewater

IF 0.8 4区 工程技术 Q4 ENGINEERING, CHEMICAL Membrane Water Treatment Pub Date : 2020-01-01 DOI:10.12989/MWT.2020.11.1.079
Wonyoung Choi, Jaecheul Yu, Jeongmi Kim, Soyeon Jeong, L. C. Direstiyani, Taeho Lee
{"title":"The effectiveness of step feeding strategies in sequencing batch reactor for a single-stage deammonification of high strength ammonia wastewater","authors":"Wonyoung Choi, Jaecheul Yu, Jeongmi Kim, Soyeon Jeong, L. C. Direstiyani, Taeho Lee","doi":"10.12989/MWT.2020.11.1.079","DOIUrl":null,"url":null,"abstract":"A single-stage deammonification with a sequencing batch reactor (SBR) that simultaneous nitritation, anaerobic ammonia oxidation (anammox), and denitrification (SNAD) occur in one reactor has been widely applied for sidestream of wastewater treatment plant. For the stable and well-balanced SNAD, a feeding strategy of influent wastewater is one of the most important operating factors in the single-stage deammonification SBR. In this study, single-stage deammonification SBR (working volume 30L) was operated to treat a high-strength ammonium wastewater (1200 mg NH4+-N/L) with different feeding strategies (single feeding and nine-step feeding) under the condition without COD. Each cycle of the step feeding involved 6 sub-cycles consisted of aerobic and anoxic periods for partial nitritation (PN) and anammox, respectively. Contrary to unstable performance in the single feeding, the step feeding showed better deammonification performance (0.565 kg-N/m3/day). Under the condition with COD, however, the nitrogen removal rate (NRR) decreased to 0.403 kg-N/m3/day when the Nine-step feeding strategies had an additional denitrification period before sub-cycles for PN and anammox. The NRR was recovered to 0.518 kg-N/m3/day by introducing an enhanced multiple-step feeding strategy. The strategy had 50 cycles consisted of feed, denitrification, PN, and anammox, instead of repeated sub-cycles for PN and anammox. The multiple-step feeding strategy without sub-cycle showed the most stable and excellent deammonification performance: high nitrogen removal efficiency (98.6%), COD removal rate (0.131 kg-COD/m3/day), and COD removal efficiency (78.8%). This seemed to be caused by that the elimination of the sub-cycles might reduce COD oxidation during aerobic condition but increase the COD utilization for denitrification period. In addition, among various sensor values, the ORP pattern appeared to be applicable to monitor and control each reaction step for deammonification in the multiple-step feeding strategy without sub-cycle. Further study to optimize the number of multiple-step feeding is still needed but these results show that the multiple-step feeding strategy can contribute to a well-balanced SNAD for deammonification when treating high-strength ammonium wastewater with COD in the single-stage deammonification SBR.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane Water Treatment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/MWT.2020.11.1.079","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

A single-stage deammonification with a sequencing batch reactor (SBR) that simultaneous nitritation, anaerobic ammonia oxidation (anammox), and denitrification (SNAD) occur in one reactor has been widely applied for sidestream of wastewater treatment plant. For the stable and well-balanced SNAD, a feeding strategy of influent wastewater is one of the most important operating factors in the single-stage deammonification SBR. In this study, single-stage deammonification SBR (working volume 30L) was operated to treat a high-strength ammonium wastewater (1200 mg NH4+-N/L) with different feeding strategies (single feeding and nine-step feeding) under the condition without COD. Each cycle of the step feeding involved 6 sub-cycles consisted of aerobic and anoxic periods for partial nitritation (PN) and anammox, respectively. Contrary to unstable performance in the single feeding, the step feeding showed better deammonification performance (0.565 kg-N/m3/day). Under the condition with COD, however, the nitrogen removal rate (NRR) decreased to 0.403 kg-N/m3/day when the Nine-step feeding strategies had an additional denitrification period before sub-cycles for PN and anammox. The NRR was recovered to 0.518 kg-N/m3/day by introducing an enhanced multiple-step feeding strategy. The strategy had 50 cycles consisted of feed, denitrification, PN, and anammox, instead of repeated sub-cycles for PN and anammox. The multiple-step feeding strategy without sub-cycle showed the most stable and excellent deammonification performance: high nitrogen removal efficiency (98.6%), COD removal rate (0.131 kg-COD/m3/day), and COD removal efficiency (78.8%). This seemed to be caused by that the elimination of the sub-cycles might reduce COD oxidation during aerobic condition but increase the COD utilization for denitrification period. In addition, among various sensor values, the ORP pattern appeared to be applicable to monitor and control each reaction step for deammonification in the multiple-step feeding strategy without sub-cycle. Further study to optimize the number of multiple-step feeding is still needed but these results show that the multiple-step feeding strategy can contribute to a well-balanced SNAD for deammonification when treating high-strength ammonium wastewater with COD in the single-stage deammonification SBR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
序批式反应器分步进料策略对高强度氨废水单段脱氨效果的影响
在一个反应器内同时进行硝化、厌氧氨氧化(anammox)和反硝化(SNAD)的单段序批式反应器(SBR)脱氨已被广泛应用于污水处理厂的侧流。在单段脱氨SBR中,进水进水策略是保证SNAD稳定平衡的重要操作因素之一。本研究采用单段脱氨SBR(工作容积30L),在无COD条件下,采用不同进料策略(单步进料和九步进料)处理高浓度氨废水(NH4+-N/L) 1200 mg。每个分步进料循环包括6个亚循环,分别为部分硝化(PN)和厌氧氨氧化(anammox)的好氧和缺氧期。与单次进料不稳定的脱氨性能相反,阶梯进料的脱氨性能更好(0.565 kg-N/m3/d)。在COD条件下,当9步投料策略在PN和厌氧氨氧化亚循环前增加一段反硝化时间时,氮去除率(NRR)降至0.403 kg-N/m3/d。通过引入改进的多步饲养策略,NRR恢复到0.518 kg-N/m3/天。该策略由进料、反硝化、PN和厌氧氨氧化组成50个循环,而不是针对PN和厌氧氨氧化的重复子循环。无子循环的多级进料策略脱氨效果最稳定,脱氨效率最高(98.6%),COD去除率最高(0.131 kg-COD/m3/d), COD去除率最高(78.8%)。这可能是由于在好氧条件下,消除子循环可能会减少COD的氧化,但增加反硝化期间的COD利用率。此外,在各种传感器值中,ORP模式似乎适用于无子循环的多级加料策略中各反应步骤的监测和控制。在单段脱氨SBR处理含COD的高强度氨废水时,多级投料策略可以实现良好的SNAD平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Membrane Water Treatment
Membrane Water Treatment ENGINEERING, CHEMICAL-WATER RESOURCES
CiteScore
1.90
自引率
30.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Membrane and Water Treatment(MWT), An International Journal, aims at opening an access to the valuable source of technical information and providing an excellent publication channel for the global community of researchers in Membrane and Water Treatment related area. Specific emphasis of the journal may include but not limited to; the engineering and scientific aspects of understanding the basic mechanisms and applying membranes for water and waste water treatment, such as transport phenomena, surface characteristics, fouling, scaling, desalination, membrane bioreactors, water reuse, and system optimization.
期刊最新文献
Modeling of biofilm growth and the related changes in hydraulic properties of porous media fMWNTs/GO/MnO2 nanocomposites as additives in a membrane for the removal of crystal violet Prioritizing water distribution pipe renewal based on seismic risk and construction cost Comparison of pollutants in stormwater runoff from asphalt and concrete roads Application of graphene, graphene oxide, and boron nitride nanosheets in the water treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1