Numerical Simulation of Flood Propagation in the Kelara River Flood Early Warning System

IF 1.2 Q4 WATER RESOURCES Journal of Water Management Modeling Pub Date : 2023-01-01 DOI:10.14796/jwmm.c501
F. Maricar, R. Karamma, M. R. Mustamin, M. F. Maricar
{"title":"Numerical Simulation of Flood Propagation in the Kelara River Flood Early Warning System","authors":"F. Maricar, R. Karamma, M. R. Mustamin, M. F. Maricar","doi":"10.14796/jwmm.c501","DOIUrl":null,"url":null,"abstract":"Flood historical data from the Kelara River in the last 10 years shows that the river has often overflowed, and the worst floods happened on January 22, 2019. One of the efforts to minimize the negative impact of a flood disaster is to conduct flood tracking. Flood tracking is an analysis of the flood along the river, or also known as flood propagation, which can be used as a reference in the preparation of a flood early warning system. This study aims to determine the propagation of the Kelara River flood which can be used to determine flood-prone areas and as a reference in the preparation of a flood early warning system. This research was carried out in 3 stages, namely flood hydrology analysis using the HEC-HMS program, numerical simulation of 2D floods using the HEC-RAS program, spatial modeling of flood-prone areas using the ArcGIS program, and preparation of a flood early warning system. The results of this study showed that the flood that occurred on January 22, 2019, was a 100-year return period flood, and determined that 10 points of residential areas/villages must be alerted when the intensity of rain is high, with the fastest time to be alerted being 52 minutes.","PeriodicalId":43297,"journal":{"name":"Journal of Water Management Modeling","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Management Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14796/jwmm.c501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Flood historical data from the Kelara River in the last 10 years shows that the river has often overflowed, and the worst floods happened on January 22, 2019. One of the efforts to minimize the negative impact of a flood disaster is to conduct flood tracking. Flood tracking is an analysis of the flood along the river, or also known as flood propagation, which can be used as a reference in the preparation of a flood early warning system. This study aims to determine the propagation of the Kelara River flood which can be used to determine flood-prone areas and as a reference in the preparation of a flood early warning system. This research was carried out in 3 stages, namely flood hydrology analysis using the HEC-HMS program, numerical simulation of 2D floods using the HEC-RAS program, spatial modeling of flood-prone areas using the ArcGIS program, and preparation of a flood early warning system. The results of this study showed that the flood that occurred on January 22, 2019, was a 100-year return period flood, and determined that 10 points of residential areas/villages must be alerted when the intensity of rain is high, with the fastest time to be alerted being 52 minutes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
克拉拉河洪水预警系统中洪水传播的数值模拟
克拉拉河过去10年的洪水历史数据显示,这条河经常泛滥,最严重的洪水发生在2019年1月22日。将洪水灾害的负面影响降到最低的努力之一是进行洪水跟踪。洪水跟踪是对河流沿线洪水的分析,也称为洪水传播,可以作为编制洪水预警系统的参考。本研究旨在确定克拉拉河洪水的传播,可用于确定洪水易发区域,并作为准备洪水预警系统的参考。本研究分3个阶段进行,即利用HEC-HMS程序进行洪水水文分析,利用HEC-RAS程序进行二维洪水数值模拟,利用ArcGIS程序对洪水易发区域进行空间建模,并建立洪水预警系统。研究结果表明,2019年1月22日发生的洪水为百年一遇的洪水,并确定了10个居民区/村庄在降雨强度较大时必须预警,最快预警时间为52分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
8
期刊最新文献
Modeling the Rainfall–Runoff Relationship with TOPMODEL in the Wadi El Kebir Watershed Bioretention Model for Urban Runoff Treatment in a Tropical Climate: A Case Study at the Universiti Sains Malaysia Rainfall-flow Modeling Using a Global Conceptual Model: Case of the Beni Bahdel Watershed (Northwest of Algeria) Numerical Simulation of Flood Propagation in the Kelara River Flood Early Warning System A New Two-dimensional Dual-permeability Model of Preferential Water Flow in the Vadose Zone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1