Steven X. Jin, Biren Saparia, J. Norton, Bryon Wood, A. Abdallah, Tara McClinton, Joe Burchi, Laura Radtke
{"title":"Monitoring of Pressure Transients in Great Lakes Water Authority Water Transmission System","authors":"Steven X. Jin, Biren Saparia, J. Norton, Bryon Wood, A. Abdallah, Tara McClinton, Joe Burchi, Laura Radtke","doi":"10.14796/jwmm.c492","DOIUrl":null,"url":null,"abstract":"Great Lakes Water Authority (GLWA) operates one of the largest water systems in the United States and, like most other water utilities, is facing the problem of aging water infrastructure. Internal pressure transient events can be a major contributing factor in the deterioration and failure of aging water pipes. To evaluate the impact of pressure transients on water main deterioration, for over three years GLWA has maintained a real-time pressure transient monitoring program within its water transmission system. The Trimble Unity Remote Monitoring suite is used; it includes high speed pressure sensors and data loggers. Approximately 6000 transient events have been recorded by the 30 transient monitoring sensors installed within the transmission system. A quantitative approach to evaluating the relative impact of pressure transients on the deterioration of water pipes has been used in analyzing the pressure transient events. The approach is based on the frequencies and pressure ranges of transient events. This paper presents the development of the transient monitoring program and analytical results of the pressure transient data. These analytical results, plus the ongoing transient monitoring data, are being used in updating GLWA’s system risk assessment.","PeriodicalId":43297,"journal":{"name":"Journal of Water Management Modeling","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Management Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14796/jwmm.c492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Great Lakes Water Authority (GLWA) operates one of the largest water systems in the United States and, like most other water utilities, is facing the problem of aging water infrastructure. Internal pressure transient events can be a major contributing factor in the deterioration and failure of aging water pipes. To evaluate the impact of pressure transients on water main deterioration, for over three years GLWA has maintained a real-time pressure transient monitoring program within its water transmission system. The Trimble Unity Remote Monitoring suite is used; it includes high speed pressure sensors and data loggers. Approximately 6000 transient events have been recorded by the 30 transient monitoring sensors installed within the transmission system. A quantitative approach to evaluating the relative impact of pressure transients on the deterioration of water pipes has been used in analyzing the pressure transient events. The approach is based on the frequencies and pressure ranges of transient events. This paper presents the development of the transient monitoring program and analytical results of the pressure transient data. These analytical results, plus the ongoing transient monitoring data, are being used in updating GLWA’s system risk assessment.