{"title":"Adipose-derived stromal/stem cells as a potential source of skin regeneration","authors":"Toshio Hasegawa, S. Ikeda","doi":"10.14800/SCTI.787","DOIUrl":null,"url":null,"abstract":"Adipose-derived stromal/stem cells are easily harvested in large quantities with a minimal size of donor site, and have the potential to differentiate into a variety of cell types. Based on the observation that the specific keratinocyte markers p63 and desmoglein 3 are expressed in adipose-derived stromal/stem cells and that their expression is downregulated after the differentiation of these cells into adipocytes, we speculate that adipose-derived stromal/stem cells have the potential to differentiate into epithelial cells. Moreover, adipose-derived stromal/stem cells treated with retinoic acid and bone morphogenetic protein 4, and co-cultured with fibroblasts on type IV collagen have expressed approximately 8 times higher levels of desmoglein 3 and cytokeratin-5 expression. These findings indicated that suitable scaffolds, growth factors, or external environments are needed in clinical use of adipose-derived stromal/stem cells in treating skin diseases. Cultured adipose-derived stromal/stem cell preparations are heterogeneous and consist of different populations of stem and progenitor cells. For a more efficient induction of differentiation, cell sorting would be necessary, by selection for markers specific to the individual subpopulations. Adipose-derived stromal/stem cells play an increasingly important role as a source of transplantable cells in the treatment of several types of diseases including skin diseases. Further preclinical and clinical studies are needed to establish the efficient introduction of adipose-derived stromal/stem cells for the treatment of skin diseases or conditions.","PeriodicalId":90974,"journal":{"name":"Stem cell and translational investigation","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell and translational investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/SCTI.787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Adipose-derived stromal/stem cells are easily harvested in large quantities with a minimal size of donor site, and have the potential to differentiate into a variety of cell types. Based on the observation that the specific keratinocyte markers p63 and desmoglein 3 are expressed in adipose-derived stromal/stem cells and that their expression is downregulated after the differentiation of these cells into adipocytes, we speculate that adipose-derived stromal/stem cells have the potential to differentiate into epithelial cells. Moreover, adipose-derived stromal/stem cells treated with retinoic acid and bone morphogenetic protein 4, and co-cultured with fibroblasts on type IV collagen have expressed approximately 8 times higher levels of desmoglein 3 and cytokeratin-5 expression. These findings indicated that suitable scaffolds, growth factors, or external environments are needed in clinical use of adipose-derived stromal/stem cells in treating skin diseases. Cultured adipose-derived stromal/stem cell preparations are heterogeneous and consist of different populations of stem and progenitor cells. For a more efficient induction of differentiation, cell sorting would be necessary, by selection for markers specific to the individual subpopulations. Adipose-derived stromal/stem cells play an increasingly important role as a source of transplantable cells in the treatment of several types of diseases including skin diseases. Further preclinical and clinical studies are needed to establish the efficient introduction of adipose-derived stromal/stem cells for the treatment of skin diseases or conditions.