Specific gene functions have been successfully suppressed by gene silencing or editing in many organisms. However, genetic manipulation to suppress the function of a target tissue has not been achieved using genes such as cytotoxin family members. We established transgenic silkworms with posterior silk glands (PSGs) that express the enzymatic domain of the cytotoxin pierisin-1A (P1A), a recently identified cytotoxic protein from the cabbage butterfly Pieris rapae , which has a relatively lower DNA ADP-ribosylating activity among the pierisin family. Larvae with the modified PSGs produced sericin cocoons with potential utility in tissue engineering. Our observations of an embryonic stem (ES) cell proliferation on fabricated sericin hydrogels demonstrated that such gels can act as a scaffolds to support cell growth and also mimic extracellular matrices to provide cell growth factors. In this highlight paper, we describe a new approach through targeted P1A expression, which could be applicable to the development of biologically-useful model organisms with tissue-specific dysfunction.
{"title":"Transgenic silkworms producing sericin cocoons applicable for tissue engineering","authors":"Eiji Kotnai, H. Mori","doi":"10.14800/SCTI.1593","DOIUrl":"https://doi.org/10.14800/SCTI.1593","url":null,"abstract":"Specific gene functions have been successfully suppressed by gene silencing or editing in many organisms. However, genetic manipulation to suppress the function of a target tissue has not been achieved using genes such as cytotoxin family members. We established transgenic silkworms with posterior silk glands (PSGs) that express the enzymatic domain of the cytotoxin pierisin-1A (P1A), a recently identified cytotoxic protein from the cabbage butterfly Pieris rapae , which has a relatively lower DNA ADP-ribosylating activity among the pierisin family. Larvae with the modified PSGs produced sericin cocoons with potential utility in tissue engineering. Our observations of an embryonic stem (ES) cell proliferation on fabricated sericin hydrogels demonstrated that such gels can act as a scaffolds to support cell growth and also mimic extracellular matrices to provide cell growth factors. In this highlight paper, we describe a new approach through targeted P1A expression, which could be applicable to the development of biologically-useful model organisms with tissue-specific dysfunction.","PeriodicalId":90974,"journal":{"name":"Stem cell and translational investigation","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48387895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fluorescent cell labeling is used to identify the specific cell lineages in a tissue or a whole organism. Transgenic organisms with fluorescent reporter genes have been created to visualize specific cell lineages and to investigate cell specific morphologies, motilities, gene expressions, neural activities, intracellular signaling, etc. However, in human cells, transgenes are often silenced during cell differentiation, and so knock-in technology was adopted to label the specific human cell lineages, although the establishment of knock-in human pluripotent stem cells (hPSCs) required considerable efforts. Genome editing technology paved the way to more efficient and useful knock-in methods. Also, we applied a bicistronic 2A-peptide-based co-expression (B2AC) system to the knock-in strategy for the fluorescent cell labeling. By using these technologies, knock-in hPSC lines were established, and the expression of Crx, a specific photoreceptor marker, was revealed during three-dimensional retinal organoid culture. The Crx expression and fluorescent intensity in the cells were positively correlated, suggesting that the B2AC reporter system functioned during human retinal development. The immunohistochemistry of Crx and the maturation of fluorescent reporter cells after long-term differentiation culture indicated that knock-in of the reporter gene did not affect the function of the target Crx gene. B2AC reporter cells successfully represented Crx upregulation by DAPT, a Notch signal inhibitor, during retinal differentiation from hPSC. These results indicated that the B2AC reporter knock-in system could be used to investigate cell transplantation, developmental mechanisms, disease signaling, drug screening, and intracellular signaling.
{"title":"Bicistronic 2A-peptide-based co-expression reporter knock-in strategy by CRISPR/Cas9 system: application to the labeling of specific cell lineages and gene expression monitoring.","authors":"K. Homma","doi":"10.14800/SCTI.1551","DOIUrl":"https://doi.org/10.14800/SCTI.1551","url":null,"abstract":"Fluorescent cell labeling is used to identify the specific cell lineages in a tissue or a whole organism. Transgenic organisms with fluorescent reporter genes have been created to visualize specific cell lineages and to investigate cell specific morphologies, motilities, gene expressions, neural activities, intracellular signaling, etc. However, in human cells, transgenes are often silenced during cell differentiation, and so knock-in technology was adopted to label the specific human cell lineages, although the establishment of knock-in human pluripotent stem cells (hPSCs) required considerable efforts. Genome editing technology paved the way to more efficient and useful knock-in methods. Also, we applied a bicistronic 2A-peptide-based co-expression (B2AC) system to the knock-in strategy for the fluorescent cell labeling. By using these technologies, knock-in hPSC lines were established, and the expression of Crx, a specific photoreceptor marker, was revealed during three-dimensional retinal organoid culture. The Crx expression and fluorescent intensity in the cells were positively correlated, suggesting that the B2AC reporter system functioned during human retinal development. The immunohistochemistry of Crx and the maturation of fluorescent reporter cells after long-term differentiation culture indicated that knock-in of the reporter gene did not affect the function of the target Crx gene. B2AC reporter cells successfully represented Crx upregulation by DAPT, a Notch signal inhibitor, during retinal differentiation from hPSC. These results indicated that the B2AC reporter knock-in system could be used to investigate cell transplantation, developmental mechanisms, disease signaling, drug screening, and intracellular signaling.","PeriodicalId":90974,"journal":{"name":"Stem cell and translational investigation","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43174191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hiroki Sato, A. Idiris, Tatsuaki Miwa, Hiromichi Kumagai
To facilitate regenerative medicine using pluripotent stem cells, such as ES/iPS cells, a stable supply of cells with uniform quality is essential. Several suspension culture techniques have been developed for the stable supply and mass production of cellular raw material, but unsolved issues still remain. In our previous report, we established a protocol for the easy, large-scale preparation of cell spheroids of uniform size based on the utilization of a special microfabric culture vessel, i.e., an “EZSPHERE.” Additionally, we found that changing the medium composition enables to carry out not only spheroid formation and proliferation, but also differentiation and maturation within the same culture vessel. This culture system can be characterized, unlike existing suspension culture techniques, by the ability to achieve high-density incubation of spheroids, thus enabling the formation of high-purity neural stem cell spheroids in a short time via the physiological activity of endogenous secretory factors. Thus, the establishment of a system for the high-density culture of homogeneous spheroids not only resolved open issues related to large-scale culture for the realization of regenerative medicine, but also provided a unique research tool for gaining new insights in the field of stem cell biology. This system is expected to contribute greatly to advancing translational research related to regenerative medicine.
{"title":"Microfabric vessel-based system for efficient 3D culture and rapid differentiation of pluripotent stem cells for regenerative medicine","authors":"Hiroki Sato, A. Idiris, Tatsuaki Miwa, Hiromichi Kumagai","doi":"10.14800/SCTI.1541","DOIUrl":"https://doi.org/10.14800/SCTI.1541","url":null,"abstract":"To facilitate regenerative medicine using pluripotent stem cells, such as ES/iPS cells, a stable supply of cells with uniform quality is essential. Several suspension culture techniques have been developed for the stable supply and mass production of cellular raw material, but unsolved issues still remain. In our previous report, we established a protocol for the easy, large-scale preparation of cell spheroids of uniform size based on the utilization of a special microfabric culture vessel, i.e., an “EZSPHERE.” Additionally, we found that changing the medium composition enables to carry out not only spheroid formation and proliferation, but also differentiation and maturation within the same culture vessel. This culture system can be characterized, unlike existing suspension culture techniques, by the ability to achieve high-density incubation of spheroids, thus enabling the formation of high-purity neural stem cell spheroids in a short time via the physiological activity of endogenous secretory factors. Thus, the establishment of a system for the high-density culture of homogeneous spheroids not only resolved open issues related to large-scale culture for the realization of regenerative medicine, but also provided a unique research tool for gaining new insights in the field of stem cell biology. This system is expected to contribute greatly to advancing translational research related to regenerative medicine.","PeriodicalId":90974,"journal":{"name":"Stem cell and translational investigation","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43778373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Embryonic stem cells (ESCs) are an ideal source for cell therapy and regenerative medicine. ESCs must be differentiated prior to their use for therapeutic applications. However, homogeneous differentiation of ESCs in vitro has proven to be challenging. We hypothesized that both biological and mechanical cues contribute to the specific differentiation of ESCs in vivo . This was tested by mimicking the in vivo microenvironment to differentiate ESCs into chondrogenic lineage using highly elastic polydimethylsiloxane (PDMS) scaffolds and the application of mechanical compression in vitro . ESCs seeded in PDMS scaffolds subjected to static compressive stress resulted in significant upregulation of genes, Sox9, Col2, and Acan , involved in early chondrogenic differentiation . However, the compressive stress did not affect expression of the late hypertrophic markers, Runx2 , Col10, and Mmp13 , signifying induction of ESCs into early chondroprogenitors. Application of mechanical stress increased expression of mechanical signaling genes, Rhoa , Yap, and Taz . The chondroinductive role of Rhoa was confirmed by the inhibition of RhoA signaling by CCG-1423, which resulted in decreased transcriptional and translational expression of chondrogenic markers. Based on these findings, we proposed a strategy for compression induced chondrogenic differentiation in mechanotransductive 3-D PDMS scaffolds.
{"title":"Chondrogenic differentiation of embryonic stem cells using mechanotransductive 3-D PDMS scaffolds","authors":"Christina McKee, D. Yao, G. Chaudhry","doi":"10.14800/SCTI.1536","DOIUrl":"https://doi.org/10.14800/SCTI.1536","url":null,"abstract":"Embryonic stem cells (ESCs) are an ideal source for cell therapy and regenerative medicine. ESCs must be differentiated prior to their use for therapeutic applications. However, homogeneous differentiation of ESCs in vitro has proven to be challenging. We hypothesized that both biological and mechanical cues contribute to the specific differentiation of ESCs in vivo . This was tested by mimicking the in vivo microenvironment to differentiate ESCs into chondrogenic lineage using highly elastic polydimethylsiloxane (PDMS) scaffolds and the application of mechanical compression in vitro . ESCs seeded in PDMS scaffolds subjected to static compressive stress resulted in significant upregulation of genes, Sox9, Col2, and Acan , involved in early chondrogenic differentiation . However, the compressive stress did not affect expression of the late hypertrophic markers, Runx2 , Col10, and Mmp13 , signifying induction of ESCs into early chondroprogenitors. Application of mechanical stress increased expression of mechanical signaling genes, Rhoa , Yap, and Taz . The chondroinductive role of Rhoa was confirmed by the inhibition of RhoA signaling by CCG-1423, which resulted in decreased transcriptional and translational expression of chondrogenic markers. Based on these findings, we proposed a strategy for compression induced chondrogenic differentiation in mechanotransductive 3-D PDMS scaffolds.","PeriodicalId":90974,"journal":{"name":"Stem cell and translational investigation","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48615299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Miyagishima, Qin Wan, Sheldon S Miller, K. Bharti
The retinal pigment epithelium (RPE) is a monolayer of highly specialized cells that help maintain the chemical composition of its surrounding subretinal and choroidal extracellular spaces. Retinal cells (photoreceptors in particular), RPE, and choroidal endothelial cells together help ensure a homeostatically stable metabolic environment with exquisitely sensitive functional responses to light. Aging and disease of the RPE impairs its supportive functions contributing to the progressive loss of photoreceptors and vision. The prevalence of RPE associated retinal degenerations has prompted researchers to develop new therapies aimed at replacing the affected RPE with induced pluripotent stem cell (iPSC) or embryonic stem cell (ESC) derived RPE. Despite recent attempts to characterize stem cell derived RPE and to truly authenticate RPE for clinical applications, there remains a significant unmet need to explore the heterogeneity resulting from donor to donor variation as well as the variations inherent in the current processes of cell manufacture. Additionally, it remains unknown whether the starting cell type influences the resulting RPE phenotype following reprogramming and differentiation. To address these questions, we performed a comprehensive evaluation (genomic, structural, and functional) of 15 iPSC derived RPE originating from different donors and tissues and compiled a reference data set for the authentication of iPSC-derived RPE and RPE derived from other stem cell sources.
{"title":"A basis for comparison: sensitive authentication of stem cell derived RPE using physiological responses of intact RPE monolayers","authors":"K. Miyagishima, Qin Wan, Sheldon S Miller, K. Bharti","doi":"10.14800/SCTI.1497","DOIUrl":"https://doi.org/10.14800/SCTI.1497","url":null,"abstract":"The retinal pigment epithelium (RPE) is a monolayer of highly specialized cells that help maintain the chemical composition of its surrounding subretinal and choroidal extracellular spaces. Retinal cells (photoreceptors in particular), RPE, and choroidal endothelial cells together help ensure a homeostatically stable metabolic environment with exquisitely sensitive functional responses to light. Aging and disease of the RPE impairs its supportive functions contributing to the progressive loss of photoreceptors and vision. The prevalence of RPE associated retinal degenerations has prompted researchers to develop new therapies aimed at replacing the affected RPE with induced pluripotent stem cell (iPSC) or embryonic stem cell (ESC) derived RPE. Despite recent attempts to characterize stem cell derived RPE and to truly authenticate RPE for clinical applications, there remains a significant unmet need to explore the heterogeneity resulting from donor to donor variation as well as the variations inherent in the current processes of cell manufacture. Additionally, it remains unknown whether the starting cell type influences the resulting RPE phenotype following reprogramming and differentiation. To address these questions, we performed a comprehensive evaluation (genomic, structural, and functional) of 15 iPSC derived RPE originating from different donors and tissues and compiled a reference data set for the authentication of iPSC-derived RPE and RPE derived from other stem cell sources.","PeriodicalId":90974,"journal":{"name":"Stem cell and translational investigation","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47293339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kiyoharu J Miyagishima, Qin Wan, Sheldon S Miller, Kapil Bharti
The retinal pigment epithelium (RPE) is a monolayer of highly specialized cells that help maintain the chemical composition of its surrounding subretinal and choroidal extracellular spaces. Retinal cells (photoreceptors in particular), RPE, and choroidal endothelial cells together help ensure a homeostatically stable metabolic environment with exquisitely sensitive functional responses to light. Aging and disease of the RPE impairs its supportive functions contributing to the progressive loss of photoreceptors and vision. The prevalence of RPE associated retinal degenerations has prompted researchers to develop new therapies aimed at replacing the affected RPE with induced pluripotent stem cell (iPSC) or embryonic stem cell (ESC) derived RPE. Despite recent attempts to characterize stem cell derived RPE and to truly authenticate RPE for clinical applications, there remains a significant unmet need to explore the heterogeneity resulting from donor to donor variation as well as the variations inherent in the current processes of cell manufacture. Additionally, it remains unknown whether the starting cell type influences the resulting RPE phenotype following reprogramming and differentiation. To address these questions, we performed a comprehensive evaluation (genomic, structural, and functional) of 15 iPSC derived RPE originating from different donors and tissues and compiled a reference data set for the authentication of iPSC-derived RPE and RPE derived from other stem cell sources.
{"title":"A basis for comparison: sensitive authentication of stem cell derived RPE using physiological responses of intact RPE monolayers.","authors":"Kiyoharu J Miyagishima, Qin Wan, Sheldon S Miller, Kapil Bharti","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The retinal pigment epithelium (RPE) is a monolayer of highly specialized cells that help maintain the chemical composition of its surrounding subretinal and choroidal extracellular spaces. Retinal cells (photoreceptors in particular), RPE, and choroidal endothelial cells together help ensure a homeostatically stable metabolic environment with exquisitely sensitive functional responses to light. Aging and disease of the RPE impairs its supportive functions contributing to the progressive loss of photoreceptors and vision. The prevalence of RPE associated retinal degenerations has prompted researchers to develop new therapies aimed at replacing the affected RPE with induced pluripotent stem cell (iPSC) or embryonic stem cell (ESC) derived RPE. Despite recent attempts to characterize stem cell derived RPE and to truly authenticate RPE for clinical applications, there remains a significant unmet need to explore the heterogeneity resulting from donor to donor variation as well as the variations inherent in the current processes of cell manufacture. Additionally, it remains unknown whether the starting cell type influences the resulting RPE phenotype following reprogramming and differentiation. To address these questions, we performed a comprehensive evaluation (genomic, structural, and functional) of 15 iPSC derived RPE originating from different donors and tissues and compiled a reference data set for the authentication of iPSC-derived RPE and RPE derived from other stem cell sources.</p>","PeriodicalId":90974,"journal":{"name":"Stem cell and translational investigation","volume":"4 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34805645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Increasing public support for stem cell researchers may increase their influence over science policy decisions and lead to more favorable policies regarding stem cell research. Yet, until recently there was little scholarship on public opinion about the roles stem cell researchers should play in crafting science policy. A national survey of US adults found that Americans are generally supportive of stem cell researchers as policy advisers but that support is uneven throughout the public. Specifically, attitudes about stem cell researchers as policy advisers depend on gender, political beliefs, age and religiosity. Surprisingly, familiarity with science has a negative effect on attitudes about stem cell researchers as policy makers. This suggests that rather than simply “teaching” the public more scientific facts, science outreach and communication may be most effective when it is narrowly tailored to the match the interests of specific social groups. It also suggests that attitudes about stem cell researchers are rooted in deeply-held cultural dispositions and that widespread changes in public opinion are likely to occur slowly.
{"title":"The cultural authority of stem cell researchers","authors":"Timothy L. O’Brien","doi":"10.14800/SCTI.1420","DOIUrl":"https://doi.org/10.14800/SCTI.1420","url":null,"abstract":"Increasing public support for stem cell researchers may increase their influence over science policy decisions and lead to more favorable policies regarding stem cell research. Yet, until recently there was little scholarship on public opinion about the roles stem cell researchers should play in crafting science policy. A national survey of US adults found that Americans are generally supportive of stem cell researchers as policy advisers but that support is uneven throughout the public. Specifically, attitudes about stem cell researchers as policy advisers depend on gender, political beliefs, age and religiosity. Surprisingly, familiarity with science has a negative effect on attitudes about stem cell researchers as policy makers. This suggests that rather than simply “teaching” the public more scientific facts, science outreach and communication may be most effective when it is narrowly tailored to the match the interests of specific social groups. It also suggests that attitudes about stem cell researchers are rooted in deeply-held cultural dispositions and that widespread changes in public opinion are likely to occur slowly.","PeriodicalId":90974,"journal":{"name":"Stem cell and translational investigation","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66658210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Previous studies have indicated the beneficial effects of transplanted neural stem cells (NSCs) on cerebral ischemia. Hypoxia-inducible factor-1α (HIF-1α) is a master transcription factor of cellular hypoxic gene expression, and its signal pathway might be the primary mechanism through which hypoxia promotes the growth of NSCs. To test the hypothesis that HIF-1α contributes to the therapeutic effect of NSCs transplantation in cerebral ischemia, we compared the efficacy of transplanting PBS, NSCs infected with recombinant adenovirus, HIF-1α gene and NSCs infected with a recombinant adenovirus vector with HIF-1α gene (HIF-1α-NSCs). A transient middle cerebral artery occlusion (tMCAO) was used in this study. PBS, HIF-1α gene, NSCs and HIF-1α-NSCs were respectively injected into cortical peri-infarction of the rat brain at 24 h after MCAO. Neurological deficits were assessed using the modified neurological severity score (NSS). Immunohistochemistry for BrdU, VEGF, Von Willebrand Factor and Nissl staining were performed. Compared with other groups HIF-1α-NSCs showed better behavioral recovery at 7, 14, 21and 28 days, and lesser degree of brain atrophy in cortex and hemisphere. More BrdU-positive cells in HIF-1α-NSCs group than that in NSCs group. Expression of VEGF and Von Willebrand Factor are both higher in HIF-1α-NSCs than those in HIF-1α or in NSCs group. Thus, we concluded that during the early period after transplantation HIF-1α infected NSCs expressed gene products,which reduce brain injury by improving the survival of NSCs and protecting the vascular system.
{"title":"Transplantation of hypoxia-inducible factor-1α gene modified neural stem cells increases cell survival and angiogenesis after cerebral ischemia","authors":"Hua Ye, Ming-rui Chen, Wan-fu Wu","doi":"10.14800/SCTI.1429","DOIUrl":"https://doi.org/10.14800/SCTI.1429","url":null,"abstract":"Previous studies have indicated the beneficial effects of transplanted neural stem cells (NSCs) on cerebral ischemia. Hypoxia-inducible factor-1α (HIF-1α) is a master transcription factor of cellular hypoxic gene expression, and its signal pathway might be the primary mechanism through which hypoxia promotes the growth of NSCs. To test the hypothesis that HIF-1α contributes to the therapeutic effect of NSCs transplantation in cerebral ischemia, we compared the efficacy of transplanting PBS, NSCs infected with recombinant adenovirus, HIF-1α gene and NSCs infected with a recombinant adenovirus vector with HIF-1α gene (HIF-1α-NSCs). A transient middle cerebral artery occlusion (tMCAO) was used in this study. PBS, HIF-1α gene, NSCs and HIF-1α-NSCs were respectively injected into cortical peri-infarction of the rat brain at 24 h after MCAO. Neurological deficits were assessed using the modified neurological severity score (NSS). Immunohistochemistry for BrdU, VEGF, Von Willebrand Factor and Nissl staining were performed. Compared with other groups HIF-1α-NSCs showed better behavioral recovery at 7, 14, 21and 28 days, and lesser degree of brain atrophy in cortex and hemisphere. More BrdU-positive cells in HIF-1α-NSCs group than that in NSCs group. Expression of VEGF and Von Willebrand Factor are both higher in HIF-1α-NSCs than those in HIF-1α or in NSCs group. Thus, we concluded that during the early period after transplantation HIF-1α infected NSCs expressed gene products,which reduce brain injury by improving the survival of NSCs and protecting the vascular system.","PeriodicalId":90974,"journal":{"name":"Stem cell and translational investigation","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66658223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stem cells possess great potential for different medical applications and every year more investigators join this field of study. As interest in stem cells has increased, it has become essential to track the cells in vivo in order to study their biodistribution and possible tissue accumulation. Here, we review the use of two new carbon nanotube-based contrast agents (CAs) for magnetic resonance imaging (MRI) called Gadonanotube (GNT) materials, which contain Gd 3+ -ion clusters or Gd 3+ chelates within the sidewall cavities of 20-80 nm long carbon nanotube (CNT) capsules. These ultra-high-performance T 1 -weighted CAs have been use to label a number of mammalian cells, including porcine bone marrow-derived mesenchymal stem cells without any observed cytotoxicity. Furthermore, various in vitro and in vivo preclinical studies have demonstrated the safety and potential of these new CNT-based materials as intracellular CA labels for stem cell tracking by MRI.
{"title":"Gadonanotube materials as new intracellular MRI contrast agents for stem cell labeling","authors":"M. Hernández-Rivera, L. Wilson","doi":"10.14800/SCTI.1390","DOIUrl":"https://doi.org/10.14800/SCTI.1390","url":null,"abstract":"Stem cells possess great potential for different medical applications and every year more investigators join this field of study. As interest in stem cells has increased, it has become essential to track the cells in vivo in order to study their biodistribution and possible tissue accumulation. Here, we review the use of two new carbon nanotube-based contrast agents (CAs) for magnetic resonance imaging (MRI) called Gadonanotube (GNT) materials, which contain Gd 3+ -ion clusters or Gd 3+ chelates within the sidewall cavities of 20-80 nm long carbon nanotube (CNT) capsules. These ultra-high-performance T 1 -weighted CAs have been use to label a number of mammalian cells, including porcine bone marrow-derived mesenchymal stem cells without any observed cytotoxicity. Furthermore, various in vitro and in vivo preclinical studies have demonstrated the safety and potential of these new CNT-based materials as intracellular CA labels for stem cell tracking by MRI.","PeriodicalId":90974,"journal":{"name":"Stem cell and translational investigation","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66658150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone grafts are normally used for the treatment of bone defects and non-union fractures, and the most common donor site is the iliac crest. The reamer-irrigator-aspirator (RIA) is an innovative technology to obtain osseous particles during intramedullary reaming in femur fractures. Discarded RIA can provide abundant native bone marrow mesenchymal stem cells (BM-MSCs) compared to the iliac crest. Autograft obtained from the use of RIA shows osteogenic potential at least equal to the iliac crest autograft with less donor site morbidity. The disadvantages of using the iliac crest including small volume, invasive harvesting, pain for the patient, makes RIA-harvested autograft bone preferable because it has good properties and is amenable for use as a sole alternative to the iliac crest graft or as a graft expander in conjunction with autologous iliac crest bone marrow aspirate.
{"title":"Ream content a stem cell source for bone defects","authors":"S. Toosi, Elham Vahednia, J. Behravan","doi":"10.14800/SCTI.1380","DOIUrl":"https://doi.org/10.14800/SCTI.1380","url":null,"abstract":"Bone grafts are normally used for the treatment of bone defects and non-union fractures, and the most common donor site is the iliac crest. The reamer-irrigator-aspirator (RIA) is an innovative technology to obtain osseous particles during intramedullary reaming in femur fractures. Discarded RIA can provide abundant native bone marrow mesenchymal stem cells (BM-MSCs) compared to the iliac crest. Autograft obtained from the use of RIA shows osteogenic potential at least equal to the iliac crest autograft with less donor site morbidity. The disadvantages of using the iliac crest including small volume, invasive harvesting, pain for the patient, makes RIA-harvested autograft bone preferable because it has good properties and is amenable for use as a sole alternative to the iliac crest graft or as a graft expander in conjunction with autologous iliac crest bone marrow aspirate.","PeriodicalId":90974,"journal":{"name":"Stem cell and translational investigation","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66658139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}