{"title":"Mechanistic model of the cells irradiation using the stochastic biophysical input","authors":"K. W. Fornalski","doi":"10.1504/IJLR.2014.068281","DOIUrl":null,"url":null,"abstract":"In this paper a full description of the mechanistic model of the cells irradiation is presented. The model is based on the computational Quasi–Markov Chain Monte Carlo method with a stochastic tree of probabilities and using the biophysical input. The biophysics of the cells is described by the probabilities and probability distributions provided as an input. Many biophysical aspects are implemented into the model, i.e. the adaptive response effect or the bystander effect. It results in the sigmoidal relationships for carcinogenic risk as a function of the irradiation. The methodology used makes the model universal and practical for the simulations of general processes. However, the presented theoretical model does not describe the real cells and tissues. Also the exposure geometry, type of radiation as well as microdosimetry are not taken into account in this model. The model is focused mainly on the creation of general and maximal wide mathematical description of irradiated hypothetical cells treated as complex physical systems.","PeriodicalId":14141,"journal":{"name":"International Journal of Low Radiation","volume":"9 1","pages":"370"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJLR.2014.068281","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Low Radiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJLR.2014.068281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 11
Abstract
In this paper a full description of the mechanistic model of the cells irradiation is presented. The model is based on the computational Quasi–Markov Chain Monte Carlo method with a stochastic tree of probabilities and using the biophysical input. The biophysics of the cells is described by the probabilities and probability distributions provided as an input. Many biophysical aspects are implemented into the model, i.e. the adaptive response effect or the bystander effect. It results in the sigmoidal relationships for carcinogenic risk as a function of the irradiation. The methodology used makes the model universal and practical for the simulations of general processes. However, the presented theoretical model does not describe the real cells and tissues. Also the exposure geometry, type of radiation as well as microdosimetry are not taken into account in this model. The model is focused mainly on the creation of general and maximal wide mathematical description of irradiated hypothetical cells treated as complex physical systems.
期刊介绍:
The IJLR is a peer-reviewed journal dedicated to the publication of research articles, review papers and technical notes in all domains related to low-dose radiation, among which are the biological and health effects in humans and the biota, in vitro and in vivo research on low radiation effects, regulatory and policy aspects, risk estimation and public perception.