Gene delivery to Jurkat T cells using non-viral vectors associated with magnetic nanoparticles

Y. Sánchez-Antequera, O. Mykhaylyk, S. Thalhammer, C. Plank
{"title":"Gene delivery to Jurkat T cells using non-viral vectors associated with magnetic nanoparticles","authors":"Y. Sánchez-Antequera, O. Mykhaylyk, S. Thalhammer, C. Plank","doi":"10.1504/IJBNN.2010.034652","DOIUrl":null,"url":null,"abstract":"This paper describes core-shell-type magnetic nanoparticles (MNPs) and magnetic lipoplexes, comprising these particles, formulated to efficiently transfect suspended human Jurkat leukaemia T cells upon application of a gradient magnetic field for magnetofection. Magnetofection of the Jurkat T cells using selected vector formulations resulted in a significant (up to 4.5-fold) enhancement in both luciferase reporter gene expression and the percentage of cells expressing eGFP, as compared to lipofection. Up to 27% of the Jurkat T cells were eGFP-positive as detected by fluorescence-activated cell sorting with correction for weak fluorescence of the lipid enhancer. The increased efficiency of magnetofection, as compared to lipofection, was shown to be at least partially attributable to increased cellular internalisation of the magnetic vectors upon magnetic field application, as compared to non-magnetic lipoplexes. The metabolic activity of the cells post-magnetofection was comparable to that of untreated cells, suggesting non-toxicity of the vector 48 h post-magnetofection.","PeriodicalId":89939,"journal":{"name":"International journal of biomedical nanoscience and nanotechnology","volume":"1 1","pages":"202"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBNN.2010.034652","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of biomedical nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBNN.2010.034652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper describes core-shell-type magnetic nanoparticles (MNPs) and magnetic lipoplexes, comprising these particles, formulated to efficiently transfect suspended human Jurkat leukaemia T cells upon application of a gradient magnetic field for magnetofection. Magnetofection of the Jurkat T cells using selected vector formulations resulted in a significant (up to 4.5-fold) enhancement in both luciferase reporter gene expression and the percentage of cells expressing eGFP, as compared to lipofection. Up to 27% of the Jurkat T cells were eGFP-positive as detected by fluorescence-activated cell sorting with correction for weak fluorescence of the lipid enhancer. The increased efficiency of magnetofection, as compared to lipofection, was shown to be at least partially attributable to increased cellular internalisation of the magnetic vectors upon magnetic field application, as compared to non-magnetic lipoplexes. The metabolic activity of the cells post-magnetofection was comparable to that of untreated cells, suggesting non-toxicity of the vector 48 h post-magnetofection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用与磁性纳米颗粒相关的非病毒载体将基因传递到Jurkat T细胞
本文描述了核-壳型磁性纳米颗粒(MNPs)和磁性脂质体,包括这些颗粒,在应用梯度磁场进行磁感染时,可以有效地转染悬浮的人类Jurkat白血病T细胞。使用选定的载体配方对Jurkat T细胞进行磁转染,与脂转染相比,荧光素酶报告基因表达和表达eGFP的细胞百分比显著(高达4.5倍)增强。通过荧光激活细胞分选检测到,高达27%的Jurkat T细胞为egfp阳性,并校正了脂质增强剂的弱荧光。与非磁性脂质瘤相比,磁感染的效率提高,至少部分归因于磁场应用后磁性载体的细胞内化增加。转染后细胞的代谢活性与未转染细胞相当,表明转染48 h后载体无毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A review on Azadirachta indica (Neem) plant mediated biosynthesis, characterisation and antimicrobial activity of silver nanoparticles Modelling of transport properties of graphene field-effect transistor for sensor application Preparation and characterisation of nanofibres from bio cellulose and neem-AgNP bio composites for wound healing Recent advances in chemical functionalisation of graphene and sensing applications Ameliorative effects of selenium nanoparticles on letrozole induced polycystic ovarian syndrome in adult rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1