A Score Based Approach to Wild Bootstrap Inference

Q3 Mathematics Journal of Econometric Methods Pub Date : 2010-06-01 DOI:10.1515/2156-6674.1006
Patrick M. Kline, Andrés Santos
{"title":"A Score Based Approach to Wild Bootstrap Inference","authors":"Patrick M. Kline, Andrés Santos","doi":"10.1515/2156-6674.1006","DOIUrl":null,"url":null,"abstract":"Abstract We propose a generalization of the wild bootstrap of Wu (1986) and Liu (1988) based upon perturbing the scores of M-estimators. This \"score bootstrap\" procedure avoids recomputing the estimator in each bootstrap iteration, making it substantially less costly to compute than the conventional nonparametric bootstrap, particularly in complex nonlinear models. Despite this computational advantage, in the linear model, the score bootstrap studentized test statistic is equivalent to that of the conventional wild bootstrap up to order Op(n-1). We establish the consistency of the procedure for Wald and Lagrange Multiplier type tests and tests of moment restrictions for a wide class of M-estimators under clustering and potential misspecification. In an extensive series of Monte Carlo experiments, we find that the performance of the score bootstrap is comparable to competing approaches despite its computational savings.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"1 1","pages":"23 - 41"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/2156-6674.1006","citationCount":"154","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/2156-6674.1006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 154

Abstract

Abstract We propose a generalization of the wild bootstrap of Wu (1986) and Liu (1988) based upon perturbing the scores of M-estimators. This "score bootstrap" procedure avoids recomputing the estimator in each bootstrap iteration, making it substantially less costly to compute than the conventional nonparametric bootstrap, particularly in complex nonlinear models. Despite this computational advantage, in the linear model, the score bootstrap studentized test statistic is equivalent to that of the conventional wild bootstrap up to order Op(n-1). We establish the consistency of the procedure for Wald and Lagrange Multiplier type tests and tests of moment restrictions for a wide class of M-estimators under clustering and potential misspecification. In an extensive series of Monte Carlo experiments, we find that the performance of the score bootstrap is comparable to competing approaches despite its computational savings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分数的野生引导推理方法
我们提出了Wu(1986)和Liu(1988)基于扰动m估计量分数的野生自举的推广。这种“分数自举”过程避免了在每次自举迭代中重新计算估计量,使得它比传统的非参数自举计算成本更低,特别是在复杂的非线性模型中。尽管有这样的计算优势,但在线性模型中,分数自举的学生化检验统计量与传统的野自举的检验统计量相当,直到Op(n-1)阶。我们建立了Wald和Lagrange乘子型检验的过程的一致性,以及在聚类和潜在错误规范下的大量m估计量的矩约束检验。在一系列广泛的蒙特卡罗实验中,我们发现分数自举的性能与竞争方法相当,尽管它节省了计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Estimation of Causal Effects with a Binary Treatment Variable: A Unified M-Estimation Framework Introduction to Latent Variable Estimation for Undergraduate Econometrics: An Application with Disney Theme Park Ride Wait Times Does Health Behavior Change After Diagnosis? Evidence From Fuzzy Regression Discontinuity Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator Nonparametric Instrumental Regression with Two-Way Fixed Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1