What Do Kernel Density Estimators Optimize?

Q3 Mathematics Journal of Econometric Methods Pub Date : 2012-01-01 DOI:10.1515/2156-6674.1011
R. Koenker, I. Mizera, Jungmo Yoon
{"title":"What Do Kernel Density Estimators Optimize?","authors":"R. Koenker, I. Mizera, Jungmo Yoon","doi":"10.1515/2156-6674.1011","DOIUrl":null,"url":null,"abstract":"Some linkages between kernel and penalty methods of density estimation are explored. It is recalled that classical Gaussian kernel density estimation can be viewed as the solution of the heat equation with initial condition given by data. We then observe that there is a direct relationship between the kernel method and a particular penalty method of density estimation. For this penalty method, solutions can be characterized as a weighted average of Gaussian kernel density estimates, the average taken with respect to the bandwidth parameter. A Laplace transform argument shows that this weighted average of Gaussian kernel estimates is equivalent to a fixed bandwidth kernel estimate using a Laplace kernel. Extensions to higher order kernels are considered and some connections to penalized likelihood density estimators are made in the concluding sections.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"1 1","pages":"15 - 22"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/2156-6674.1011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/2156-6674.1011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Some linkages between kernel and penalty methods of density estimation are explored. It is recalled that classical Gaussian kernel density estimation can be viewed as the solution of the heat equation with initial condition given by data. We then observe that there is a direct relationship between the kernel method and a particular penalty method of density estimation. For this penalty method, solutions can be characterized as a weighted average of Gaussian kernel density estimates, the average taken with respect to the bandwidth parameter. A Laplace transform argument shows that this weighted average of Gaussian kernel estimates is equivalent to a fixed bandwidth kernel estimate using a Laplace kernel. Extensions to higher order kernels are considered and some connections to penalized likelihood density estimators are made in the concluding sections.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核密度估计器优化了什么?
探讨了密度估计的核方法和惩罚方法之间的联系。回顾经典高斯核密度估计可以看作是数据给出初始条件的热方程的解。然后,我们观察到核方法与密度估计的特定惩罚方法之间存在直接关系。对于这种惩罚方法,解可以表征为高斯核密度估计的加权平均值,即关于带宽参数的平均值。一个拉普拉斯变换论证表明高斯核估计的加权平均等价于使用拉普拉斯核的固定带宽核估计。讨论了对高阶核的扩展,并在结论部分给出了与惩罚似然密度估计的一些联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Estimation of Causal Effects with a Binary Treatment Variable: A Unified M-Estimation Framework Introduction to Latent Variable Estimation for Undergraduate Econometrics: An Application with Disney Theme Park Ride Wait Times Does Health Behavior Change After Diagnosis? Evidence From Fuzzy Regression Discontinuity Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator Nonparametric Instrumental Regression with Two-Way Fixed Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1