Linear Model IV Estimation When Instruments Are Many or Weak

Q3 Mathematics Journal of Econometric Methods Pub Date : 2016-01-01 DOI:10.1515/jem-2012-0007
Michael P. Murray
{"title":"Linear Model IV Estimation When Instruments Are Many or Weak","authors":"Michael P. Murray","doi":"10.1515/jem-2012-0007","DOIUrl":null,"url":null,"abstract":"Abstract Economists rely frequently on instrumental variables estimation to overcome biases that endogenous explanatory variables cause in ordinary least squares estimation. However, traditional instrumental variables estimators, such as two-stage least squares and limited information maximum likelihood estimation, can suffer persistent estimator biases and size-of-test biases in even very large samples if the instruments used are large in number or are only weakly correlated with an endogenous explanatory variable. This paper reviews strategies for grappling with weak instruments and with large numbers of instruments in linear regression models.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2012-0007","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2012-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract Economists rely frequently on instrumental variables estimation to overcome biases that endogenous explanatory variables cause in ordinary least squares estimation. However, traditional instrumental variables estimators, such as two-stage least squares and limited information maximum likelihood estimation, can suffer persistent estimator biases and size-of-test biases in even very large samples if the instruments used are large in number or are only weakly correlated with an endogenous explanatory variable. This paper reviews strategies for grappling with weak instruments and with large numbers of instruments in linear regression models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当仪器多或弱时的线性模型IV估计
经济学家经常依靠工具变量估计来克服内源性解释变量在普通最小二乘估计中引起的偏差。然而,传统的工具变量估计,如两阶段最小二乘和有限信息最大似然估计,即使在非常大的样本中,如果使用的工具数量很大或仅与内生解释变量弱相关,也会遭受持续的估计量偏差和检验大小偏差。本文回顾了在线性回归模型中处理弱工具和大量工具的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Estimation of Causal Effects with a Binary Treatment Variable: A Unified M-Estimation Framework Introduction to Latent Variable Estimation for Undergraduate Econometrics: An Application with Disney Theme Park Ride Wait Times Does Health Behavior Change After Diagnosis? Evidence From Fuzzy Regression Discontinuity Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator Nonparametric Instrumental Regression with Two-Way Fixed Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1