On the Robustness of Coefficient Estimates to the Inclusion of Proxy Variables

Q3 Mathematics Journal of Econometric Methods Pub Date : 2014-01-01 DOI:10.1515/jem-2012-0008
C. Bollinger, Jenny Minier
{"title":"On the Robustness of Coefficient Estimates to the Inclusion of Proxy Variables","authors":"C. Bollinger, Jenny Minier","doi":"10.1515/jem-2012-0008","DOIUrl":null,"url":null,"abstract":"Abstract This paper considers the use of multiple proxy measures for an unobserved variable and contrasts the approach taken in the measurement error literature to that of the model specification literature. We find that including all available proxy variables in the regression minimizes the bias on coefficients of correctly measured variables in the regression. We derive a set of bounds for all parameters in the model, and compare these results to extreme bounds analysis. Monte Carlo simulations demonstrate the performance of our bounds relative to extreme bounds. We conclude with an empirical example from the cross-country growth literature in which human capital is measured through three proxy variables: literacy rates, and enrollment in primary and secondary school, and show that our approach yields results that contrast sharply with extreme bounds analysis.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"4 1","pages":"101 - 122"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2012-0008","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2012-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 16

Abstract

Abstract This paper considers the use of multiple proxy measures for an unobserved variable and contrasts the approach taken in the measurement error literature to that of the model specification literature. We find that including all available proxy variables in the regression minimizes the bias on coefficients of correctly measured variables in the regression. We derive a set of bounds for all parameters in the model, and compare these results to extreme bounds analysis. Monte Carlo simulations demonstrate the performance of our bounds relative to extreme bounds. We conclude with an empirical example from the cross-country growth literature in which human capital is measured through three proxy variables: literacy rates, and enrollment in primary and secondary school, and show that our approach yields results that contrast sharply with extreme bounds analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于包含代理变量的系数估计的稳健性
本文考虑了对未观测变量使用多个代理度量,并将测量误差文献中采用的方法与模型规范文献中采用的方法进行了对比。我们发现,在回归中包含所有可用的代理变量可以最大限度地减少回归中正确测量变量的系数偏差。我们推导了模型中所有参数的一组边界,并将这些结果与极值边界分析进行了比较。蒙特卡罗模拟证明了我们的边界相对于极限边界的性能。我们以跨国增长文献中的一个实证例子作为结论,其中人力资本是通过三个代理变量来衡量的:识字率和中小学入学率,并表明我们的方法产生的结果与极端边界分析形成鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Estimation of Causal Effects with a Binary Treatment Variable: A Unified M-Estimation Framework Introduction to Latent Variable Estimation for Undergraduate Econometrics: An Application with Disney Theme Park Ride Wait Times Does Health Behavior Change After Diagnosis? Evidence From Fuzzy Regression Discontinuity Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator Nonparametric Instrumental Regression with Two-Way Fixed Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1