Percentile and Percentile-t Bootstrap Confidence Intervals: A Practical Comparison

Q3 Mathematics Journal of Econometric Methods Pub Date : 2014-01-01 DOI:10.1515/jem-2013-0015
Christopher J. Elias
{"title":"Percentile and Percentile-t Bootstrap Confidence Intervals: A Practical Comparison","authors":"Christopher J. Elias","doi":"10.1515/jem-2013-0015","DOIUrl":null,"url":null,"abstract":"Abstract This paper employs a Monte Carlo study to compare the performance of equal-tailed bootstrap percentile-t, symmetric bootstrap percentile-t, bootstrap percentile, and standard asymptotic confidence intervals in two distinct heteroscedastic regression models. Bootstrap confidence intervals are constructed with both the XY and wild bootstrap algorithm. Theory implies that the percentile-t methods will outperform the other methods, where performance is based on the convergence rate of empirical coverage to the nominal level. Results are consistent across models, in that in the case of the XY bootstrap algorithm the symmetric percentile-t method outperforms the other methods, but in the case of the wild bootstrap algorithm the two percentile-t methods perform similarly and outperform the other methods. The implication is that practitioners that employ the XY algorithm should utilize the symmetric percentile-t interval, while those who opt for the wild algorithm should use either of the percentile-t methods.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"4 1","pages":"153 - 161"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2013-0015","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2013-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This paper employs a Monte Carlo study to compare the performance of equal-tailed bootstrap percentile-t, symmetric bootstrap percentile-t, bootstrap percentile, and standard asymptotic confidence intervals in two distinct heteroscedastic regression models. Bootstrap confidence intervals are constructed with both the XY and wild bootstrap algorithm. Theory implies that the percentile-t methods will outperform the other methods, where performance is based on the convergence rate of empirical coverage to the nominal level. Results are consistent across models, in that in the case of the XY bootstrap algorithm the symmetric percentile-t method outperforms the other methods, but in the case of the wild bootstrap algorithm the two percentile-t methods perform similarly and outperform the other methods. The implication is that practitioners that employ the XY algorithm should utilize the symmetric percentile-t interval, while those who opt for the wild algorithm should use either of the percentile-t methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
百分位和百分位-t Bootstrap置信区间:一个实用的比较
摘要本文采用蒙特卡罗方法比较了两种不同异方差回归模型中等尾自举百分位数-t、对称自举百分位数-t、自举百分位数和标准渐近置信区间的性能。用XY和野生自举算法构造自举置信区间。理论表明,百分位-t方法将优于其他方法,其中的性能是基于经验覆盖到名义水平的收敛率。不同模型的结果是一致的,在XY自举算法的情况下,对称百分位数-t方法优于其他方法,但在野生自举算法的情况下,两个百分位数-t方法的性能相似,并且优于其他方法。这意味着使用XY算法的从业者应该使用对称的百分位数-t间隔,而那些选择野生算法的人应该使用百分位数-t方法中的任何一个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Estimation of Causal Effects with a Binary Treatment Variable: A Unified M-Estimation Framework Introduction to Latent Variable Estimation for Undergraduate Econometrics: An Application with Disney Theme Park Ride Wait Times Does Health Behavior Change After Diagnosis? Evidence From Fuzzy Regression Discontinuity Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator Nonparametric Instrumental Regression with Two-Way Fixed Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1