Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks

Q3 Mathematics Journal of Econometric Methods Pub Date : 2015-01-01 DOI:10.1515/jem-2015-0021
Jari Hännikäinen
{"title":"Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks","authors":"Jari Hännikäinen","doi":"10.1515/jem-2015-0021","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we analyze the forecasting performance of a set of widely used window selection methods in the presence of data revisions and recent structural breaks. Our Monte Carlo and empirical results for U.S. real GDP and inflation show that the expanding window estimator often yields the most accurate forecasts after a recent break. It performs well regardless of whether the revisions are news or noise, or whether we forecast first-release or final values. We find that the differences in the forecasting accuracy are large in practice, especially when we forecast inflation after the break of the early 1980s.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2015-0021","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2015-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this paper, we analyze the forecasting performance of a set of widely used window selection methods in the presence of data revisions and recent structural breaks. Our Monte Carlo and empirical results for U.S. real GDP and inflation show that the expanding window estimator often yields the most accurate forecasts after a recent break. It performs well regardless of whether the revisions are news or noise, or whether we forecast first-release or final values. We find that the differences in the forecasting accuracy are large in practice, especially when we forecast inflation after the break of the early 1980s.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在数据修订和最近的结构断裂存在的估计窗口的选择
在本文中,我们分析了一组广泛使用的窗口选择方法在存在数据修订和最近的结构断裂的情况下的预测性能。我们对美国实际GDP和通货膨胀的蒙特卡洛和实证结果表明,在最近的中断之后,扩展窗口估计器通常会产生最准确的预测。无论修订是新闻还是噪音,或者我们预测的是首次发布的值还是最终的值,它都表现良好。我们发现,在实践中,特别是在预测20世纪80年代初破裂后的通货膨胀时,预测精度的差异很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Estimation of Causal Effects with a Binary Treatment Variable: A Unified M-Estimation Framework Introduction to Latent Variable Estimation for Undergraduate Econometrics: An Application with Disney Theme Park Ride Wait Times Does Health Behavior Change After Diagnosis? Evidence From Fuzzy Regression Discontinuity Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator Nonparametric Instrumental Regression with Two-Way Fixed Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1