Root-n Consistent Kernel Density Estimation in Practice

Q3 Mathematics Journal of Econometric Methods Pub Date : 2015-01-01 DOI:10.1515/jem-2014-0010
D. Henderson, Christopher F. Parmeter
{"title":"Root-n Consistent Kernel Density Estimation in Practice","authors":"D. Henderson, Christopher F. Parmeter","doi":"10.1515/jem-2014-0010","DOIUrl":null,"url":null,"abstract":"Abstract This paper details implementation of the recently proposed root-n kernel density estimator of (Escanciano, J. C., and D. T. Jacho-Chávez. 2012. “ n $\\sqrt n $ -uniformly consistent density estimation in nonparametric regression models.” Journal of Econometrics 167: 305–316.) that circumvents the slow rate of convergence of traditional nonparametric kernel density estimators. We discuss implementation issues such as bandwidth selection and controlling for heteroskedasticity. Two empirical examples are provided; we re-examine the classic study of the emerging multimodality of the cross-country distribution of income per capita, finding more local structure with this new method, and we study the distribution of lean body mass across gender, where we demonstrate robustness of the new methods to alternative bandwidth selection mechanisms.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2014-0010","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2014-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract This paper details implementation of the recently proposed root-n kernel density estimator of (Escanciano, J. C., and D. T. Jacho-Chávez. 2012. “ n $\sqrt n $ -uniformly consistent density estimation in nonparametric regression models.” Journal of Econometrics 167: 305–316.) that circumvents the slow rate of convergence of traditional nonparametric kernel density estimators. We discuss implementation issues such as bandwidth selection and controlling for heteroskedasticity. Two empirical examples are provided; we re-examine the classic study of the emerging multimodality of the cross-country distribution of income per capita, finding more local structure with this new method, and we study the distribution of lean body mass across gender, where we demonstrate robustness of the new methods to alternative bandwidth selection mechanisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实用的根n一致核密度估计
本文详细介绍了(Escanciano, j.c., and d.t. Jacho-Chávez)最近提出的根n核密度估计器的实现。2012. n $\sqrt n $ -非参数回归模型中的一致密度估计该方法克服了传统非参数核密度估计的缓慢收敛速度。我们讨论了实现问题,如带宽选择和控制异方差。给出了两个实证例子;我们重新审视了新兴的多模态人均收入跨国分布的经典研究,用这种新方法找到了更多的地方结构,我们研究了瘦体重的跨性别分布,在那里我们证明了新方法对替代带宽选择机制的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Estimation of Causal Effects with a Binary Treatment Variable: A Unified M-Estimation Framework Introduction to Latent Variable Estimation for Undergraduate Econometrics: An Application with Disney Theme Park Ride Wait Times Does Health Behavior Change After Diagnosis? Evidence From Fuzzy Regression Discontinuity Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator Nonparametric Instrumental Regression with Two-Way Fixed Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1