Model Uncertainty and Model Averaging in Regression Discontinuity Designs

Q3 Mathematics Journal of Econometric Methods Pub Date : 2015-01-01 DOI:10.1515/jem-2014-0016
Patrick Button
{"title":"Model Uncertainty and Model Averaging in Regression Discontinuity Designs","authors":"Patrick Button","doi":"10.1515/jem-2014-0016","DOIUrl":null,"url":null,"abstract":"Abstract Parametric (polynomial) models are popular in research employing regression discontinuity designs and are required when data are discrete. However, researchers often choose a parametric model based on data inspection or pretesting. These approaches lead to standard errors and confidence intervals that are too small because they do not incorporate model uncertainty. I propose using Frequentist model averaging to incorporate model uncertainty into parametric models. My Monte Carlo experiments show that Frequentist model averaging leads to mean square error and coverage probability improvements over pretesting. An application to [Lee, D. S. 2008. “Randomized Experiments From Non-Random Selection in US House Elections.” Journal of Econometrics 142 (2): 675–697.] shows how this approach works in practice, and how conventionally selected models may not be ideal.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"5 1","pages":"103 - 116"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2014-0016","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2014-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Parametric (polynomial) models are popular in research employing regression discontinuity designs and are required when data are discrete. However, researchers often choose a parametric model based on data inspection or pretesting. These approaches lead to standard errors and confidence intervals that are too small because they do not incorporate model uncertainty. I propose using Frequentist model averaging to incorporate model uncertainty into parametric models. My Monte Carlo experiments show that Frequentist model averaging leads to mean square error and coverage probability improvements over pretesting. An application to [Lee, D. S. 2008. “Randomized Experiments From Non-Random Selection in US House Elections.” Journal of Econometrics 142 (2): 675–697.] shows how this approach works in practice, and how conventionally selected models may not be ideal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回归不连续设计中的模型不确定性和模型平均
参数(多项式)模型在采用回归不连续设计的研究中很受欢迎,并且在数据是离散的情况下是必需的。然而,研究人员通常选择基于数据检验或预检验的参数模型。这些方法导致标准误差和置信区间太小,因为它们没有考虑模型的不确定性。我建议使用频率模型平均将模型不确定性纳入参数模型。我的蒙特卡罗实验表明,频率模型平均导致均方误差和覆盖概率优于预测试。申请[Lee, d.s. 2008]。“美国众议院选举非随机选择的随机实验。”经济研究进展(2):1 - 6。显示了这种方法在实践中是如何工作的,以及传统选择的模型可能不是理想的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Estimation of Causal Effects with a Binary Treatment Variable: A Unified M-Estimation Framework Introduction to Latent Variable Estimation for Undergraduate Econometrics: An Application with Disney Theme Park Ride Wait Times Does Health Behavior Change After Diagnosis? Evidence From Fuzzy Regression Discontinuity Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator Nonparametric Instrumental Regression with Two-Way Fixed Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1