Monte Carlo Evidence on the Estimation Method for Industry Dynamics

Q3 Mathematics Journal of Econometric Methods Pub Date : 2016-08-16 DOI:10.1515/jem-2018-0010
Kazufumi Yamana
{"title":"Monte Carlo Evidence on the Estimation Method for Industry Dynamics","authors":"Kazufumi Yamana","doi":"10.1515/jem-2018-0010","DOIUrl":null,"url":null,"abstract":"Abstract This study presents a structural estimation method for nonlinear stochastic dynamic models of heterogeneous firms. I perform a Monte Carlo experiment to evaluate the performance of the estimators for the AR(1) dynamic panel data subject to sample selection without exogenous regressors. The results suggest a strong need to correct the sample selection and that the proposed structural estimation method works well. These results are important for practical situations where the assumptions of the standard sample selection correction methods are not satisfied.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2018-0010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2018-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This study presents a structural estimation method for nonlinear stochastic dynamic models of heterogeneous firms. I perform a Monte Carlo experiment to evaluate the performance of the estimators for the AR(1) dynamic panel data subject to sample selection without exogenous regressors. The results suggest a strong need to correct the sample selection and that the proposed structural estimation method works well. These results are important for practical situations where the assumptions of the standard sample selection correction methods are not satisfied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
行业动态估计方法的蒙特卡罗证据
摘要本文提出了异质企业非线性随机动态模型的结构估计方法。我进行了蒙特卡罗实验,以评估AR(1)动态面板数据的估计器的性能,这些数据受样本选择的影响,没有外生回归。结果表明,需要对样本选择进行修正,并且所提出的结构估计方法效果良好。这些结果对于不满足标准样本选择校正方法假设的实际情况是重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Estimation of Causal Effects with a Binary Treatment Variable: A Unified M-Estimation Framework Introduction to Latent Variable Estimation for Undergraduate Econometrics: An Application with Disney Theme Park Ride Wait Times Does Health Behavior Change After Diagnosis? Evidence From Fuzzy Regression Discontinuity Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator Nonparametric Instrumental Regression with Two-Way Fixed Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1