On the Implications of Essential Heterogeneity for Estimating Causal Impacts Using Social Experiments

Q3 Mathematics Journal of Econometric Methods Pub Date : 2011-09-01 DOI:10.1515/jem-2013-0009
M. Ravallion
{"title":"On the Implications of Essential Heterogeneity for Estimating Causal Impacts Using Social Experiments","authors":"M. Ravallion","doi":"10.1515/jem-2013-0009","DOIUrl":null,"url":null,"abstract":"Abstract The standard model of essential heterogeneity, whereby program take up depends on unobserved costs and benefits of take up, is generalized to allow the source of latent heterogeneity to influence counterfactual outcomes. The standard instrumental variables (IV) estimator is shown to still be preferable to the naïve, ordinary least squares (OLS), estimator for mean impact on the treated. However, under certain conditions, the IV estimate of the overall mean impact will be even more biased than OLS. Examples are given for stylized training, insurance and microcredit schemes.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"4 1","pages":"145 - 151"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2013-0009","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2013-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11

Abstract

Abstract The standard model of essential heterogeneity, whereby program take up depends on unobserved costs and benefits of take up, is generalized to allow the source of latent heterogeneity to influence counterfactual outcomes. The standard instrumental variables (IV) estimator is shown to still be preferable to the naïve, ordinary least squares (OLS), estimator for mean impact on the treated. However, under certain conditions, the IV estimate of the overall mean impact will be even more biased than OLS. Examples are given for stylized training, insurance and microcredit schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用社会实验估计因果影响的本质异质性的含义
基本异质性的标准模型,即项目占用取决于未观察到的成本和占用的收益,被推广到允许潜在异质性的来源影响反事实的结果。标准工具变量(IV)估计器仍然优于naïve,普通最小二乘(OLS)估计器对被处理者的平均影响。然而,在某些条件下,总体平均影响的IV估计甚至会比OLS更有偏差。以程式化的培训、保险和小额信贷计划为例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Estimation of Causal Effects with a Binary Treatment Variable: A Unified M-Estimation Framework Introduction to Latent Variable Estimation for Undergraduate Econometrics: An Application with Disney Theme Park Ride Wait Times Does Health Behavior Change After Diagnosis? Evidence From Fuzzy Regression Discontinuity Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator Nonparametric Instrumental Regression with Two-Way Fixed Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1