A software to estimate heat stress impact on dairy cattle productive performance

Q2 Agricultural and Biological Sciences Agronomy research Pub Date : 2019-01-01 DOI:10.15159/AR.19.110
C. S. Teles, R. Gates, M. Barbari, L. Conti, G. Rossi, M. O. Vilela, C. F. Souza, I. Tinôco
{"title":"A software to estimate heat stress impact on dairy cattle productive performance","authors":"C. S. Teles, R. Gates, M. Barbari, L. Conti, G. Rossi, M. O. Vilela, C. F. Souza, I. Tinôco","doi":"10.15159/AR.19.110","DOIUrl":null,"url":null,"abstract":"The aim of this study is to develop a computational tool, based on the Temperature and Humidity Index value, to characterize the thermal environment in dairy cattle barns and to evaluate the impact of thermal stress on productive performance. The software for the thermal environment prediction, and determination of the influence of heat stress on dairy cow productivity (Ambi + Leite) was developed using the C# programming language in the Microsoft Visual C# 2010 Express Integrated Development Environment. The following scenario was considered for the program test: air temperature 32°C, relative air humidity 70% and milk production potential in thermoneutrality condition 20 kg cow-1 day-1. The prediction of the thermal environment based on the simulated situations indicates that the animals are submitted to a moderate heat stress condition with THI equal to 82.81. In this condition a decrease of approximately 26% in milk production and a reduction of 4 kg cow-1 day-1 in food intake was calculated. In conclusion, the developed software can be a practical tool to assist the producer in making-decision processes.","PeriodicalId":7924,"journal":{"name":"Agronomy research","volume":"85 1","pages":"872-878"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15159/AR.19.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3

Abstract

The aim of this study is to develop a computational tool, based on the Temperature and Humidity Index value, to characterize the thermal environment in dairy cattle barns and to evaluate the impact of thermal stress on productive performance. The software for the thermal environment prediction, and determination of the influence of heat stress on dairy cow productivity (Ambi + Leite) was developed using the C# programming language in the Microsoft Visual C# 2010 Express Integrated Development Environment. The following scenario was considered for the program test: air temperature 32°C, relative air humidity 70% and milk production potential in thermoneutrality condition 20 kg cow-1 day-1. The prediction of the thermal environment based on the simulated situations indicates that the animals are submitted to a moderate heat stress condition with THI equal to 82.81. In this condition a decrease of approximately 26% in milk production and a reduction of 4 kg cow-1 day-1 in food intake was calculated. In conclusion, the developed software can be a practical tool to assist the producer in making-decision processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个估算热应激对奶牛生产性能影响的软件
本研究的目的是开发一种基于温湿度指数值的计算工具来表征奶牛舍内的热环境,并评估热应激对生产性能的影响。在Microsoft Visual c# 2010 Express集成开发环境下,利用c#编程语言开发了热环境预测、热应激对奶牛产量影响测定软件(Ambi + Leite)。程序试验考虑以下情景:空气温度32℃,相对空气湿度70%,热中性条件下产奶量20 kg奶牛1天1。基于模拟情景的热环境预测表明,动物处于中等热应激状态,THI = 82.81。在这种情况下,计算得出产奶量减少约26%,日采食量减少4公斤。总之,所开发的软件可以作为一个实用的工具来帮助生产者进行决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Agronomy research
Agronomy research Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
2.10
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Agronomy Research is a peer-reviewed international Journal intended for publication of broad-spectrum original articles, reviews and short communications on actual problems of modern biosystems engineering including crop and animal science, genetics, economics, farm- and production engineering, environmental aspects, agro-ecology, renewable energy and bioenergy etc. in the temperate regions of the world.
期刊最新文献
Adaptation of various maize hybrids when grown for biomass New device for air disinfection with a shielded uv radiation and ozone Genetic components for fodder yield and agronomic characters in maize lines Intra-annual height growth dynamics of Scots and lodgepole pines and its relationship with meteorological parameters in central Latvia. Insects in chicken nutrition. A review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1