General analytics limitations with coronavirus healthcare big data

IF 0.4 Q4 HEALTH CARE SCIENCES & SERVICES International Journal of Healthcare Technology and Management Pub Date : 2021-01-01 DOI:10.1504/ijhtm.2021.10042936
K. Strang
{"title":"General analytics limitations with coronavirus healthcare big data","authors":"K. Strang","doi":"10.1504/ijhtm.2021.10042936","DOIUrl":null,"url":null,"abstract":"Search engines and the SPSS Python R extension were used to analyse COVID-19 healthcare big data information stored on the internet to identify significant limitations of statistical techniques. The sample was a manageable subset of dynamic information from the internet time-stamped to midnight of 14 April, 2020 with a filter set for coronavirus confirmed cases or deaths in Wuhan Hubei province in China, New York State in USA and New South Wales, Australia. There were surprising results, indicating using general analytics that the healthcare big data were not reliable. Interesting relationships were detected when linking Australian foreign property ownership to the cities experiencing the largest coronavirus related fatalities.","PeriodicalId":51933,"journal":{"name":"International Journal of Healthcare Technology and Management","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Healthcare Technology and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijhtm.2021.10042936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 1

Abstract

Search engines and the SPSS Python R extension were used to analyse COVID-19 healthcare big data information stored on the internet to identify significant limitations of statistical techniques. The sample was a manageable subset of dynamic information from the internet time-stamped to midnight of 14 April, 2020 with a filter set for coronavirus confirmed cases or deaths in Wuhan Hubei province in China, New York State in USA and New South Wales, Australia. There were surprising results, indicating using general analytics that the healthcare big data were not reliable. Interesting relationships were detected when linking Australian foreign property ownership to the cities experiencing the largest coronavirus related fatalities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冠状病毒医疗保健大数据的一般分析限制
使用搜索引擎和SPSS Python R扩展对存储在互联网上的COVID-19医疗保健大数据信息进行分析,以确定统计技术的重大局限性。该样本是一个可管理的动态信息子集,这些信息来自互联网,时间戳为2020年4月14日午夜,并为中国湖北省武汉市、美国纽约州和澳大利亚新南威尔士州的冠状病毒确诊病例或死亡设置了过滤器。令人惊讶的结果表明,使用一般分析方法,医疗保健大数据并不可靠。当将澳大利亚的外国房产所有权与冠状病毒相关死亡人数最多的城市联系起来时,发现了有趣的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
10.00%
发文量
10
期刊介绍: IJHTM is a new series emerging from the International Journal of Technology Management. It provides an international forum and refereed authoritative sources of information in the fields of management, economics and the management of technology in healthcare.
期刊最新文献
Resource management for full paying patient service in Malaysia: issues and challenges Sustainable healthcare information exchanges network design: a scenario-based planning approach Intentional non-compliance: influencing employees' compliance decision in healthcare services Medical device industry in Iran: key driving forces of domestic production up to 2040 The stent for life initiative in Portugal: a critical realist perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1