{"title":"A Semiparametric Bayesian Approach for Analyzing Longitudinal Data from Multiple Related Groups","authors":"Kiranmoy Das, Prince Afriyie, Lauren Spirko","doi":"10.1515/ijb-2015-0002","DOIUrl":null,"url":null,"abstract":"Abstract Often the biological and/or clinical experiments result in longitudinal data from multiple related groups. The analysis of such data is quite challenging due to the fact that groups might have shared information on the mean and/or covariance functions. In this article, we consider a Bayesian semiparametric approach of modeling the mean trajectories for longitudinal response coming from multiple related groups. We consider matrix stick-breaking process priors on the group mean parameters which allows information sharing on the mean trajectories across the groups. Simulation studies are performed to demonstrate the effectiveness of the proposed approach compared to the more traditional approaches. We analyze data from a one-year follow-up of nutrition education for hypercholesterolemic children with three different treatments where the children are from different age-groups. Our analysis provides more clinically useful information than the previous analysis of the same dataset. The proposed approach will be a very powerful tool for analyzing data from clinical trials and other medical experiments.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"30 1","pages":"273 - 284"},"PeriodicalIF":1.2000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0002","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2015-0002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Often the biological and/or clinical experiments result in longitudinal data from multiple related groups. The analysis of such data is quite challenging due to the fact that groups might have shared information on the mean and/or covariance functions. In this article, we consider a Bayesian semiparametric approach of modeling the mean trajectories for longitudinal response coming from multiple related groups. We consider matrix stick-breaking process priors on the group mean parameters which allows information sharing on the mean trajectories across the groups. Simulation studies are performed to demonstrate the effectiveness of the proposed approach compared to the more traditional approaches. We analyze data from a one-year follow-up of nutrition education for hypercholesterolemic children with three different treatments where the children are from different age-groups. Our analysis provides more clinically useful information than the previous analysis of the same dataset. The proposed approach will be a very powerful tool for analyzing data from clinical trials and other medical experiments.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.