首页 > 最新文献

International Journal of Biostatistics最新文献

英文 中文
A review of survival stacking: a method to cast survival regression analysis as a classification problem.
IF 1.2 4区 数学 Pub Date : 2025-03-28 DOI: 10.1515/ijb-2022-0055
Erin Craig, Chenyang Zhong, Robert Tibshirani

While there are many well-developed data science methods for classification and regression, there are relatively few methods for working with right-censored data. Here, we review survival stacking, a method for casting a survival regression analysis problem as a classification problem, thereby allowing the use of general classification methods and software in a survival setting. Inspired by the Cox partial likelihood, survival stacking collects features and outcomes of survival data in a large data frame with a binary outcome. We show that survival stacking with logistic regression is approximately equivalent to the Cox proportional hazards model. We further illustrate survival stacking on real and simulated data. By reframing survival regression problems as classification problems, survival stacking removes the reliance on specialized tools for survival regression, and makes it straightforward for data scientists to use well-known learning algorithms and software for classification in the survival setting. This in turn lowers the barrier for flexible survival modeling.

虽然有很多成熟的分类和回归数据科学方法,但处理右删失数据的方法相对较少。在这里,我们回顾了生存堆叠法,这是一种将生存回归分析问题作为分类问题来处理的方法,从而允许在生存环境中使用一般的分类方法和软件。受 Cox 部分似然法的启发,生存堆叠法在一个具有二元结果的大型数据框架中收集生存数据的特征和结果。我们的研究表明,使用逻辑回归的生存堆积近似等同于 Cox 比例危险模型。我们还在真实数据和模拟数据上进一步说明了生存堆叠。通过将生存回归问题重构为分类问题,生存堆叠消除了对生存回归专用工具的依赖,使数据科学家可以直接使用众所周知的学习算法和软件在生存环境中进行分类。这反过来又降低了灵活建立生存模型的门槛。
{"title":"A review of survival stacking: a method to cast survival regression analysis as a classification problem.","authors":"Erin Craig, Chenyang Zhong, Robert Tibshirani","doi":"10.1515/ijb-2022-0055","DOIUrl":"https://doi.org/10.1515/ijb-2022-0055","url":null,"abstract":"<p><p>While there are many well-developed data science methods for classification and regression, there are relatively few methods for working with right-censored data. Here, we review survival stacking, a method for casting a survival regression analysis problem as a classification problem, thereby allowing the use of general classification methods and software in a survival setting. Inspired by the Cox partial likelihood, survival stacking collects features and outcomes of survival data in a large data frame with a binary outcome. We show that survival stacking with logistic regression is approximately equivalent to the Cox proportional hazards model. We further illustrate survival stacking on real and simulated data. By reframing survival regression problems as classification problems, survival stacking removes the reliance on specialized tools for survival regression, and makes it straightforward for data scientists to use well-known learning algorithms and software for classification in the survival setting. This in turn lowers the barrier for flexible survival modeling.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143732819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multivariate Bayesian learning approach for improved detection of doping in athletes using urinary steroid profiles.
IF 1.2 4区 数学 Pub Date : 2025-03-28 DOI: 10.1515/ijb-2024-0019
Dimitra Eleftheriou, Thomas Piper, Mario Thevis, Tereza Neocleous

Biomarker analysis of athletes' urinary steroid profiles is crucial for the success of anti-doping efforts. Current statistical analysis methods generate personalised limits for each athlete based on univariate modelling of longitudinal biomarker values from the urinary steroid profile. However, simultaneous modelling of multiple biomarkers has the potential to further enhance abnormality detection. In this study, we propose a multivariate Bayesian adaptive model for longitudinal data analysis, which extends the established single-biomarker model in forensic toxicology. The proposed approach employs Markov chain Monte Carlo sampling methods and addresses the scarcity of confirmed abnormal values through a one-class classification algorithm. By adapting decision boundaries as new measurements are obtained, the model provides robust and personalised detection thresholds for each athlete. We tested the proposed approach on a database of 229 athletes, which includes longitudinal steroid profiles containing samples classified as normal, atypical, or confirmed abnormal. Our results demonstrate improved detection performance, highlighting the potential value of a multivariate approach in doping detection.

对运动员尿液类固醇谱进行生物标志物分析是反兴奋剂工作取得成功的关键。目前的统计分析方法是根据尿液类固醇图谱中纵向生物标志物值的单变量建模,为每个运动员生成个性化的限值。然而,对多种生物标志物同时建模有可能进一步提高异常检测水平。在本研究中,我们提出了一种用于纵向数据分析的多变量贝叶斯自适应模型,该模型扩展了法医毒理学中已有的单生物标记物模型。所提出的方法采用马尔可夫链蒙特卡洛抽样方法,并通过单类分类算法解决了证实异常值稀缺的问题。通过在获得新的测量结果时调整决策边界,该模型可为每位运动员提供稳健且个性化的检测阈值。我们在一个包含 229 名运动员的数据库中测试了所提出的方法,该数据库包含纵向类固醇档案,其中的样本被分类为正常、非典型或确认异常。我们的结果证明了检测性能的提高,突出了多元方法在兴奋剂检测中的潜在价值。
{"title":"A multivariate Bayesian learning approach for improved detection of doping in athletes using urinary steroid profiles.","authors":"Dimitra Eleftheriou, Thomas Piper, Mario Thevis, Tereza Neocleous","doi":"10.1515/ijb-2024-0019","DOIUrl":"https://doi.org/10.1515/ijb-2024-0019","url":null,"abstract":"<p><p>Biomarker analysis of athletes' urinary steroid profiles is crucial for the success of anti-doping efforts. Current statistical analysis methods generate personalised limits for each athlete based on univariate modelling of longitudinal biomarker values from the urinary steroid profile. However, simultaneous modelling of multiple biomarkers has the potential to further enhance abnormality detection. In this study, we propose a multivariate Bayesian adaptive model for longitudinal data analysis, which extends the established single-biomarker model in forensic toxicology. The proposed approach employs Markov chain Monte Carlo sampling methods and addresses the scarcity of confirmed abnormal values through a one-class classification algorithm. By adapting decision boundaries as new measurements are obtained, the model provides robust and personalised detection thresholds for each athlete. We tested the proposed approach on a database of 229 athletes, which includes longitudinal steroid profiles containing samples classified as normal, atypical, or confirmed abnormal. Our results demonstrate improved detection performance, highlighting the potential value of a multivariate approach in doping detection.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143732816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regression analysis of clustered current status data with informative cluster size under a transformed survival model.
IF 1.2 4区 数学 Pub Date : 2025-03-24 DOI: 10.1515/ijb-2023-0130
Yanqin Feng, Shijiao Yin, Jieli Ding

In this paper, we study inference methods for regression analysis of clustered current status data with informative cluster sizes. When the correlated failure times of interest arise from a general class of semiparametric transformation frailty models, we develop a nonparametric maximum likelihood estimation based method for regression analysis and conduct an expectation-maximization algorithm to implement it. The asymptotic properties including consistency and asymptotic normality of the proposed estimators are established. Extensive simulation studies are conducted and indicate that the proposed method works well. The developed approach is applied to analyze a real-life data set from a tumorigenicity study.

{"title":"Regression analysis of clustered current status data with informative cluster size under a transformed survival model.","authors":"Yanqin Feng, Shijiao Yin, Jieli Ding","doi":"10.1515/ijb-2023-0130","DOIUrl":"https://doi.org/10.1515/ijb-2023-0130","url":null,"abstract":"<p><p>In this paper, we study inference methods for regression analysis of clustered current status data with informative cluster sizes. When the correlated failure times of interest arise from a general class of semiparametric transformation frailty models, we develop a nonparametric maximum likelihood estimation based method for regression analysis and conduct an expectation-maximization algorithm to implement it. The asymptotic properties including consistency and asymptotic normality of the proposed estimators are established. Extensive simulation studies are conducted and indicate that the proposed method works well. The developed approach is applied to analyze a real-life data set from a tumorigenicity study.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143674819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prognostic adjustment with efficient estimators to unbiasedly leverage historical data in randomized trials.
IF 1.2 4区 数学 Pub Date : 2025-03-11 DOI: 10.1515/ijb-2024-0018
Lauren D Liao, Emilie Højbjerre-Frandsen, Alan E Hubbard, Alejandro Schuler

Although randomized controlled trials (RCTs) are a cornerstone of comparative effectiveness, they typically have much smaller sample size than observational studies due to financial and ethical considerations. Therefore there is interest in using plentiful historical data (either observational data or prior trials) to reduce trial sizes. Previous estimators developed for this purpose rely on unrealistic assumptions, without which the added data can bias the treatment effect estimate. Recent work proposed an alternative method (prognostic covariate adjustment) that imposes no additional assumptions and increases efficiency in trial analyses. The idea is to use historical data to learn a prognostic model: a regression of the outcome onto the covariates. The predictions from this model, generated from the RCT subjects' baseline variables, are then used as a covariate in a linear regression analysis of the trial data. In this work, we extend prognostic adjustment to trial analyses with nonparametric efficient estimators, which are more powerful than linear regression. We provide theory that explains why prognostic adjustment improves small-sample point estimation and inference without any possibility of bias. Simulations corroborate the theory: efficient estimators using prognostic adjustment compared to without provides greater power (i.e., smaller standard errors) when the trial is small. Population shifts between historical and trial data attenuate benefits but do not introduce bias. We showcase our estimator using clinical trial data provided by Novo Nordisk A/S that evaluates insulin therapy for individuals with type 2 diabetes.

{"title":"Prognostic adjustment with efficient estimators to unbiasedly leverage historical data in randomized trials.","authors":"Lauren D Liao, Emilie Højbjerre-Frandsen, Alan E Hubbard, Alejandro Schuler","doi":"10.1515/ijb-2024-0018","DOIUrl":"https://doi.org/10.1515/ijb-2024-0018","url":null,"abstract":"<p><p>Although randomized controlled trials (RCTs) are a cornerstone of comparative effectiveness, they typically have much smaller sample size than observational studies due to financial and ethical considerations. Therefore there is interest in using plentiful historical data (either observational data or prior trials) to reduce trial sizes. Previous estimators developed for this purpose rely on unrealistic assumptions, without which the added data can bias the treatment effect estimate. Recent work proposed an alternative method (prognostic covariate adjustment) that imposes no additional assumptions and increases efficiency in trial analyses. The idea is to use historical data to learn a prognostic model: a regression of the outcome onto the covariates. The predictions from this model, generated from the RCT subjects' baseline variables, are then used as a covariate in a linear regression analysis of the trial data. In this work, we extend prognostic adjustment to trial analyses with nonparametric efficient estimators, which are more powerful than linear regression. We provide theory that explains why prognostic adjustment improves small-sample point estimation and inference without any possibility of bias. Simulations corroborate the theory: efficient estimators using prognostic adjustment compared to without provides greater power (i.e., smaller standard errors) when the trial is small. Population shifts between historical and trial data attenuate benefits but do not introduce bias. We showcase our estimator using clinical trial data provided by Novo Nordisk A/S that evaluates insulin therapy for individuals with type 2 diabetes.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143598241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian covariance regression in functional data analysis with applications to functional brain imaging. 贝叶斯协方差回归在功能数据分析中的应用,以及在脑功能成像中的应用。
IF 1.2 4区 数学 Pub Date : 2025-02-05 DOI: 10.1515/ijb-2023-0029
John Shamshoian, Nicholas Marco, Damla Şentürk, Shafali Jeste, Donatello Telesca

Function on scalar regression models relate functional outcomes to scalar predictors through the conditional mean function. With few and limited exceptions, many functional regression frameworks operate under the assumption that covariate information does not affect patterns of covariation. In this manuscript, we address this disparity by developing a Bayesian functional regression model, providing joint inference for both the conditional mean and covariance functions. Our work hinges on basis expansions of both the functional evaluation domain and covariate space, to define flexible non-parametric forms of dependence. To aid interpretation, we develop novel low-dimensional summaries, which indicate the degree of covariate-dependent heteroskedasticity. The proposed modeling framework is motivated and applied to a case study in functional brain imaging through electroencephalography, aiming to elucidate potential differentiation in the neural development of children with autism spectrum disorder.

标量函数回归模型通过条件均值函数将函数结果与标量预测因子联系起来。除了极少数例外情况,许多函数回归框架都是在协变量信息不会影响协变量模式的假设下运行的。在本手稿中,我们通过建立贝叶斯函数回归模型,为条件均值函数和协方差函数提供联合推断,从而解决了这一差异。我们的工作依赖于功能评估域和协方差空间的基础扩展,以定义灵活的非参数依赖形式。为了帮助解释,我们开发了新颖的低维摘要,用于显示协变量依赖异方差的程度。我们提出了建模框架的动机,并将其应用于通过脑电图进行的脑功能成像案例研究,旨在阐明自闭症谱系障碍儿童神经发育过程中的潜在分化。
{"title":"Bayesian covariance regression in functional data analysis with applications to functional brain imaging.","authors":"John Shamshoian, Nicholas Marco, Damla Şentürk, Shafali Jeste, Donatello Telesca","doi":"10.1515/ijb-2023-0029","DOIUrl":"https://doi.org/10.1515/ijb-2023-0029","url":null,"abstract":"<p><p>Function on scalar regression models relate functional outcomes to scalar predictors through the conditional mean function. With few and limited exceptions, many functional regression frameworks operate under the assumption that covariate information does not affect patterns of covariation. In this manuscript, we address this disparity by developing a Bayesian functional regression model, providing joint inference for both the conditional mean and covariance functions. Our work hinges on basis expansions of both the functional evaluation domain and covariate space, to define flexible non-parametric forms of dependence. To aid interpretation, we develop novel low-dimensional summaries, which indicate the degree of covariate-dependent heteroskedasticity. The proposed modeling framework is motivated and applied to a case study in functional brain imaging through electroencephalography, aiming to elucidate potential differentiation in the neural development of children with autism spectrum disorder.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DsubCox: a fast subsampling algorithm for Cox model with distributed and massive survival data.
IF 1.2 4区 数学 Pub Date : 2025-02-04 DOI: 10.1515/ijb-2024-0042
Haixiang Zhang, Yang Li, HaiYing Wang

To ensure privacy protection and alleviate computational burden, we propose a fast subsmaling procedure for the Cox model with massive survival datasets from multi-centered, decentralized sources. The proposed estimator is computed based on optimal subsampling probabilities that we derived and enables transmission of subsample-based summary level statistics between different storage sites with only one round of communication. For inference, the asymptotic properties of the proposed estimator were rigorously established. An extensive simulation study demonstrated that the proposed approach is effective. The methodology was applied to analyze a large dataset from the U.S. airlines.

{"title":"<b>DsubCox</b>: a fast subsampling algorithm for Cox model with distributed and massive survival data.","authors":"Haixiang Zhang, Yang Li, HaiYing Wang","doi":"10.1515/ijb-2024-0042","DOIUrl":"https://doi.org/10.1515/ijb-2024-0042","url":null,"abstract":"<p><p>To ensure privacy protection and alleviate computational burden, we propose a fast subsmaling procedure for the Cox model with massive survival datasets from multi-centered, decentralized sources. The proposed estimator is computed based on optimal subsampling probabilities that we derived and enables transmission of subsample-based summary level statistics between different storage sites with only one round of communication. For inference, the asymptotic properties of the proposed estimator were rigorously established. An extensive simulation study demonstrated that the proposed approach is effective. The methodology was applied to analyze a large dataset from the U.S. airlines.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143081371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypothesis testing for detecting outlier evaluators. 检测离群评估员的假设检验。
IF 1.2 4区 数学 Pub Date : 2024-11-04 eCollection Date: 2024-11-01 DOI: 10.1515/ijb-2023-0004
Li Xu, David M Zucker, Molin Wang

In epidemiological studies, the measurements of disease outcomes are carried out by different evaluators. In this paper, we propose a two-stage procedure for detecting outlier evaluators. In the first stage, a regression model is fitted to obtain the evaluators' effects. Outlier evaluators have different effects than normal evaluators. In the second stage, stepwise hypothesis tests are performed to detect outlier evaluators. The true positive rate and true negative rate of the proposed procedure are assessed in a simulation study. We apply the proposed method to detect potential outlier audiologists among the audiologists who measured hearing threshold levels of the participants in the Audiology Assessment Arm of the Conservation of Hearing Study, which is an epidemiological study for examining risk factors of hearing loss.

在流行病学研究中,对疾病结果的测量是由不同的评估者进行的。本文提出了一种分两个阶段检测离群评价者的方法。在第一阶段,拟合回归模型以获得评价者的效应。离群评价者与正常评价者的效果不同。在第二阶段,通过逐步假设检验来检测离群评价者。在模拟研究中评估了建议程序的真阳性率和真阴性率。听力保护研究是一项流行病学研究,旨在检查听力损失的风险因素。我们采用所提出的方法,从测量听力保护研究听力评估臂参与者听力阈值水平的听力学家中检测出潜在的离群听力学家。
{"title":"Hypothesis testing for detecting outlier evaluators.","authors":"Li Xu, David M Zucker, Molin Wang","doi":"10.1515/ijb-2023-0004","DOIUrl":"10.1515/ijb-2023-0004","url":null,"abstract":"<p><p>In epidemiological studies, the measurements of disease outcomes are carried out by different evaluators. In this paper, we propose a two-stage procedure for detecting outlier evaluators. In the first stage, a regression model is fitted to obtain the evaluators' effects. Outlier evaluators have different effects than normal evaluators. In the second stage, stepwise hypothesis tests are performed to detect outlier evaluators. The true positive rate and true negative rate of the proposed procedure are assessed in a simulation study. We apply the proposed method to detect potential outlier audiologists among the audiologists who measured hearing threshold levels of the participants in the Audiology Assessment Arm of the Conservation of Hearing Study, which is an epidemiological study for examining risk factors of hearing loss.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"419-431"},"PeriodicalIF":1.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing personalized treatments for targeted patient populations across multiple domains. 跨领域优化针对目标患者群体的个性化治疗。
IF 1.2 4区 数学 Pub Date : 2024-09-26 eCollection Date: 2024-11-01 DOI: 10.1515/ijb-2024-0068
Yuan Chen, Donglin Zeng, Yuanjia Wang

Learning individualized treatment rules (ITRs) for a target patient population with mental disorders is confronted with many challenges. First, the target population may be different from the training population that provided data for learning ITRs. Ignoring differences between the training patient data and the target population can result in sub-optimal treatment strategies for the target population. Second, for mental disorders, a patient's underlying mental state is not observed but can be inferred from measures of high-dimensional combinations of symptomatology. Treatment mechanisms are unknown and can be complex, and thus treatment effect moderation can take complicated forms. To address these challenges, we propose a novel method that connects measurement models, efficient weighting schemes, and flexible neural network architecture through latent variables to tailor treatments for a target population. Patients' underlying mental states are represented by a compact set of latent state variables while preserving interpretability. Weighting schemes are designed based on lower-dimensional latent variables to efficiently balance population differences so that biases in learning the latent structure and treatment effects are mitigated. Extensive simulation studies demonstrated consistent superiority of the proposed method and the weighting approach. Applications to two real-world studies of patients with major depressive disorder have shown a broad utility of the proposed method in improving treatment outcomes in the target population.

针对目标精神障碍患者群体学习个性化治疗规则(ITR)面临着许多挑战。首先,目标人群可能不同于为学习 ITR 提供数据的训练人群。忽略训练患者数据与目标人群之间的差异,可能会导致针对目标人群的治疗策略达不到最佳效果。其次,对于精神障碍而言,患者的基本精神状态无法观察到,但可以通过症状的高维组合测量来推断。治疗机制是未知的,也可能是复杂的,因此治疗效果调节的形式也可能是复杂的。为了应对这些挑战,我们提出了一种新方法,通过潜变量将测量模型、高效加权方案和灵活的神经网络架构联系起来,为目标人群量身定制治疗方案。患者的基本心理状态由一组紧凑的潜在状态变量表示,同时保持可解释性。加权方案的设计基于低维潜在变量,以有效平衡人群差异,从而减轻学习潜在结构和治疗效果的偏差。广泛的模拟研究表明,所提出的方法和加权方法具有一致的优越性。在两项针对重度抑郁症患者的实际研究中的应用表明,所提出的方法在改善目标人群的治疗效果方面具有广泛的实用性。
{"title":"Optimizing personalized treatments for targeted patient populations across multiple domains.","authors":"Yuan Chen, Donglin Zeng, Yuanjia Wang","doi":"10.1515/ijb-2024-0068","DOIUrl":"10.1515/ijb-2024-0068","url":null,"abstract":"<p><p>Learning individualized treatment rules (ITRs) for a target patient population with mental disorders is confronted with many challenges. First, the target population may be different from the training population that provided data for learning ITRs. Ignoring differences between the training patient data and the target population can result in sub-optimal treatment strategies for the target population. Second, for mental disorders, a patient's underlying mental state is not observed but can be inferred from measures of high-dimensional combinations of symptomatology. Treatment mechanisms are unknown and can be complex, and thus treatment effect moderation can take complicated forms. To address these challenges, we propose a novel method that connects measurement models, efficient weighting schemes, and flexible neural network architecture through latent variables to tailor treatments for a target population. Patients' underlying mental states are represented by a compact set of latent state variables while preserving interpretability. Weighting schemes are designed based on lower-dimensional latent variables to efficiently balance population differences so that biases in learning the latent structure and treatment effects are mitigated. Extensive simulation studies demonstrated consistent superiority of the proposed method and the weighting approach. Applications to two real-world studies of patients with major depressive disorder have shown a broad utility of the proposed method in improving treatment outcomes in the target population.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"437-453"},"PeriodicalIF":1.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
History-restricted marginal structural model and latent class growth analysis of treatment trajectories for a time-dependent outcome. 针对随时间变化的结果,对治疗轨迹进行历史限制边际结构模型和潜类增长分析。
IF 1.2 4区 数学 Pub Date : 2024-08-12 eCollection Date: 2024-11-01 DOI: 10.1515/ijb-2023-0116
Awa Diop, Caroline Sirois, Jason R Guertin, Mireille E Schnitzer, James M Brophy, Claudia Blais, Denis Talbot

In previous work, we introduced a framework that combines latent class growth analysis (LCGA) with marginal structural models (LCGA-MSM). LCGA-MSM first summarizes the numerous time-varying treatment patterns into a few trajectory groups and then allows for a population-level causal interpretation of the group differences. However, the LCGA-MSM framework is not suitable when the outcome is time-dependent. In this study, we propose combining a nonparametric history-restricted marginal structural model (HRMSM) with LCGA. HRMSMs can be seen as an application of standard MSMs on multiple time intervals. To the best of our knowledge, we also present the first application of HRMSMs with a time-to-event outcome. It was previously noted that HRMSMs could pose interpretation problems in survival analysis when either targeting a hazard ratio or a survival curve. We propose a causal parameter that bypasses these interpretation challenges. We consider three different estimators of the parameters: inverse probability of treatment weighting (IPTW), g-computation, and a pooled longitudinal targeted maximum likelihood estimator (pooled LTMLE). We conduct simulation studies to measure the performance of the proposed LCGA-HRMSM. For all scenarios, we obtain unbiased estimates when using either g-computation or pooled LTMLE. IPTW produced estimates with slightly larger bias in some scenarios. Overall, all approaches have good coverage of the 95 % confidence interval. We applied our approach to a population of older Quebecers composed of 57,211 statin initiators and found that a greater adherence to statins was associated with a lower combined risk of cardiovascular disease or all-cause mortality.

在之前的工作中,我们提出了一种将潜类增长分析(LCGA)与边际结构模型(LCGA-MSM)相结合的框架。LCGA-MSM 首先将众多随时间变化的治疗模式归纳为几个轨迹组,然后对组间差异进行群体层面的因果解释。然而,LCGA-MSM 框架并不适合结果随时间变化的情况。在本研究中,我们建议将非参数历史限制边际结构模型(HRMSM)与 LCGA 结合起来。HRMSM 可以看作是标准 MSM 在多个时间区间上的应用。据我们所知,我们还首次将 HRMSMs 应用于时间到事件结果。以前曾有人指出,当以危险比或生存曲线为目标时,HRMSMs 可能会在生存分析中带来解释问题。我们提出的因果参数可以绕过这些解释难题。我们考虑了三种不同的参数估计方法:逆治疗概率加权法(IPTW)、g 计算法和集合纵向目标最大似然估计法(pooled LTMLE)。我们进行了模拟研究,以衡量所提出的 LCGA-HRMSM 的性能。在所有情况下,无论是使用 g 计算还是集合 LTMLE,我们都能获得无偏估计值。在某些情况下,IPTW 得出的估计值偏差稍大。总体而言,所有方法都能很好地覆盖 95% 的置信区间。我们将这一方法应用于由 57,211 名他汀类药物服用者组成的魁北克老年人群,发现他汀类药物服用依从性越高,心血管疾病或全因死亡的综合风险越低。
{"title":"History-restricted marginal structural model and latent class growth analysis of treatment trajectories for a time-dependent outcome.","authors":"Awa Diop, Caroline Sirois, Jason R Guertin, Mireille E Schnitzer, James M Brophy, Claudia Blais, Denis Talbot","doi":"10.1515/ijb-2023-0116","DOIUrl":"10.1515/ijb-2023-0116","url":null,"abstract":"<p><p>In previous work, we introduced a framework that combines latent class growth analysis (LCGA) with marginal structural models (LCGA-MSM). LCGA-MSM first summarizes the numerous time-varying treatment patterns into a few trajectory groups and then allows for a population-level causal interpretation of the group differences. However, the LCGA-MSM framework is not suitable when the outcome is time-dependent. In this study, we propose combining a nonparametric history-restricted marginal structural model (HRMSM) with LCGA. HRMSMs can be seen as an application of standard MSMs on multiple time intervals. To the best of our knowledge, we also present the first application of HRMSMs with a time-to-event outcome. It was previously noted that HRMSMs could pose interpretation problems in survival analysis when either targeting a hazard ratio or a survival curve. We propose a causal parameter that bypasses these interpretation challenges. We consider three different estimators of the parameters: inverse probability of treatment weighting (IPTW), g-computation, and a pooled longitudinal targeted maximum likelihood estimator (pooled LTMLE). We conduct simulation studies to measure the performance of the proposed LCGA-HRMSM. For all scenarios, we obtain unbiased estimates when using either g-computation or pooled LTMLE. IPTW produced estimates with slightly larger bias in some scenarios. Overall, all approaches have good coverage of the 95 % confidence interval. We applied our approach to a population of older Quebecers composed of 57,211 statin initiators and found that a greater adherence to statins was associated with a lower combined risk of cardiovascular disease or all-cause mortality.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"467-490"},"PeriodicalIF":1.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661564/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid classical-Bayesian approach to sample size determination for two-arm superiority clinical trials. 经典-贝叶斯混合法确定双臂优势临床试验的样本量。
IF 1.2 4区 数学 Pub Date : 2024-07-01 eCollection Date: 2024-11-01 DOI: 10.1515/ijb-2023-0050
Valeria Sambucini

Traditional methods for Sample Size Determination (SSD) based on power analysis exploit relevant fixed values or preliminary estimates for the unknown parameters. A hybrid classical-Bayesian approach can be used to formally incorporate information or model uncertainty on unknown quantities by using prior distributions according to the Bayesian approach, while still analysing the data in a frequentist framework. In this paper, we propose a hybrid procedure for SSD in two-arm superiority trials, that takes into account the different role played by the unknown parameters involved in the statistical power. Thus, different prior distributions are used to formalize design expectations and to model information or uncertainty on preliminary estimates involved at the analysis stage. To illustrate the method, we consider binary data and derive the proposed hybrid criteria using three possible parameters of interest, i.e. the difference between proportions of successes, the logarithm of the relative risk and the logarithm of the odds ratio. Numerical examples taken from the literature are presented to show how to implement the proposed procedure.

基于功率分析的传统样本量确定(SSD)方法利用的是未知参数的相关固定值或初步估计值。经典-贝叶斯混合方法可用于正式纳入未知量的信息或模型不确定性,方法是根据贝叶斯方法使用先验分布,同时仍在频数主义框架下分析数据。在本文中,我们针对双臂优势试验中的 SSD 提出了一种混合程序,该程序考虑到了统计功率中涉及的未知参数所扮演的不同角色。因此,我们使用不同的先验分布来正式确定设计预期,并对分析阶段涉及的初步估计信息或不确定性进行建模。为了说明该方法,我们考虑了二进制数据,并使用三个可能的相关参数,即成功比例差、相对风险对数和几率比对数,推导出了所建议的混合标准。文中还提供了文献中的数字示例,以说明如何实施所建议的程序。
{"title":"Hybrid classical-Bayesian approach to sample size determination for two-arm superiority clinical trials.","authors":"Valeria Sambucini","doi":"10.1515/ijb-2023-0050","DOIUrl":"10.1515/ijb-2023-0050","url":null,"abstract":"<p><p>Traditional methods for Sample Size Determination (SSD) based on power analysis exploit relevant fixed values or preliminary estimates for the unknown parameters. A hybrid classical-Bayesian approach can be used to formally incorporate information or model uncertainty on unknown quantities by using prior distributions according to the Bayesian approach, while still analysing the data in a frequentist framework. In this paper, we propose a hybrid procedure for SSD in two-arm superiority trials, that takes into account the different role played by the unknown parameters involved in the statistical power. Thus, different prior distributions are used to formalize design expectations and to model information or uncertainty on preliminary estimates involved at the analysis stage. To illustrate the method, we consider binary data and derive the proposed hybrid criteria using three possible parameters of interest, i.e. the difference between proportions of successes, the logarithm of the relative risk and the logarithm of the odds ratio. Numerical examples taken from the literature are presented to show how to implement the proposed procedure.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"553-570"},"PeriodicalIF":1.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Biostatistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1