K. Linn, Bilwaj Gaonkar, J. Doshi, C. Davatzikos, R. Shinohara
{"title":"Addressing Confounding in Predictive Models with an Application to Neuroimaging","authors":"K. Linn, Bilwaj Gaonkar, J. Doshi, C. Davatzikos, R. Shinohara","doi":"10.1515/ijb-2015-0030","DOIUrl":null,"url":null,"abstract":"Abstract Understanding structural changes in the brain that are caused by a particular disease is a major goal of neuroimaging research. Multivariate pattern analysis (MVPA) comprises a collection of tools that can be used to understand complex disease efxcfects across the brain. We discuss several important issues that must be considered when analyzing data from neuroimaging studies using MVPA. In particular, we focus on the consequences of confounding by non-imaging variables such as age and sex on the results of MVPA. After reviewing current practice to address confounding in neuroimaging studies, we propose an alternative approach based on inverse probability weighting. Although the proposed method is motivated by neuroimaging applications, it is broadly applicable to many problems in machine learning and predictive modeling. We demonstrate the advantages of our approach on simulated and real data examples.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":"31 - 44"},"PeriodicalIF":1.2000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0030","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2015-0030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38
Abstract
Abstract Understanding structural changes in the brain that are caused by a particular disease is a major goal of neuroimaging research. Multivariate pattern analysis (MVPA) comprises a collection of tools that can be used to understand complex disease efxcfects across the brain. We discuss several important issues that must be considered when analyzing data from neuroimaging studies using MVPA. In particular, we focus on the consequences of confounding by non-imaging variables such as age and sex on the results of MVPA. After reviewing current practice to address confounding in neuroimaging studies, we propose an alternative approach based on inverse probability weighting. Although the proposed method is motivated by neuroimaging applications, it is broadly applicable to many problems in machine learning and predictive modeling. We demonstrate the advantages of our approach on simulated and real data examples.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.