{"title":"Sample Size for Assessing Agreement between Two Methods of Measurement by Bland−Altman Method","authors":"Mengfei Lu, Weihua Zhong, Yu-xiu Liu, Hua-zhang Miao, Yong-Chang Li, Mu-Huo Ji","doi":"10.1515/ijb-2015-0039","DOIUrl":null,"url":null,"abstract":"Abstract: The Bland–Altman method has been widely used for assessing agreement between two methods of measurement. However, it remains unsolved about sample size estimation. We propose a new method of sample size estimation for Bland–Altman agreement assessment. According to the Bland–Altman method, the conclusion on agreement is made based on the width of the confidence interval for LOAs (limits of agreement) in comparison to predefined clinical agreement limit. Under the theory of statistical inference, the formulae of sample size estimation are derived, which depended on the pre-determined level of α, β, the mean and the standard deviation of differences between two measurements, and the predefined limits. With this new method, the sample sizes are calculated under different parameter settings which occur frequently in method comparison studies, and Monte-Carlo simulation is used to obtain the corresponding powers. The results of Monte-Carlo simulation showed that the achieved powers could coincide with the pre-determined level of powers, thus validating the correctness of the method. The method of sample size estimation can be applied in the Bland–Altman method to assess agreement between two methods of measurement.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0039","citationCount":"169","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2015-0039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 169
Abstract
Abstract: The Bland–Altman method has been widely used for assessing agreement between two methods of measurement. However, it remains unsolved about sample size estimation. We propose a new method of sample size estimation for Bland–Altman agreement assessment. According to the Bland–Altman method, the conclusion on agreement is made based on the width of the confidence interval for LOAs (limits of agreement) in comparison to predefined clinical agreement limit. Under the theory of statistical inference, the formulae of sample size estimation are derived, which depended on the pre-determined level of α, β, the mean and the standard deviation of differences between two measurements, and the predefined limits. With this new method, the sample sizes are calculated under different parameter settings which occur frequently in method comparison studies, and Monte-Carlo simulation is used to obtain the corresponding powers. The results of Monte-Carlo simulation showed that the achieved powers could coincide with the pre-determined level of powers, thus validating the correctness of the method. The method of sample size estimation can be applied in the Bland–Altman method to assess agreement between two methods of measurement.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.