Asanao Shimokawa, Y. Narita, S. Shibui, E. Miyaoka
{"title":"Tree Based Method for Aggregate Survival Data Modeling","authors":"Asanao Shimokawa, Y. Narita, S. Shibui, E. Miyaoka","doi":"10.1515/ijb-2015-0071","DOIUrl":null,"url":null,"abstract":"Abstract In many scenarios, a patient in medical research is treated as a statistical unit. However, in some scenarios, we are interested in treating aggregate data as a statistical unit. In such situations, each set of aggregated data is considered to be a concept in a symbolic representation, and each concept has a hyperrectangle or multiple points in the variable space. To construct a tree-structured model from these aggregate survival data, we propose a new approach, where a datum can be included in several terminal nodes in a tree. By constructing a model under this condition, we expect to obtain a more flexible model while retaining the interpretive ease of a hierarchical structure. In this approach, the survival function of concepts that are partially included in a node is constructed using the Kaplan-Meier method, where the number of events and risks at each time point is replaced by the expectation value of the number of individual descriptions of concepts. We present an application of this proposed model using primary brain tumor patient data. As a result, we obtained a new interpretation of the data in comparison to the classical survival tree modeling methods.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"39 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0071","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2015-0071","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In many scenarios, a patient in medical research is treated as a statistical unit. However, in some scenarios, we are interested in treating aggregate data as a statistical unit. In such situations, each set of aggregated data is considered to be a concept in a symbolic representation, and each concept has a hyperrectangle or multiple points in the variable space. To construct a tree-structured model from these aggregate survival data, we propose a new approach, where a datum can be included in several terminal nodes in a tree. By constructing a model under this condition, we expect to obtain a more flexible model while retaining the interpretive ease of a hierarchical structure. In this approach, the survival function of concepts that are partially included in a node is constructed using the Kaplan-Meier method, where the number of events and risks at each time point is replaced by the expectation value of the number of individual descriptions of concepts. We present an application of this proposed model using primary brain tumor patient data. As a result, we obtained a new interpretation of the data in comparison to the classical survival tree modeling methods.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.